235 research outputs found

    Epeak estimator for Gamma-Ray Bursts Observed by the Swift Burst Alert Telescope

    Full text link
    We report a correlation based on a spectral simulation study of the prompt emission spectra of gamma-ray bursts (GRBs) detected by the Swift Burst Alert Telescope (BAT). The correlation is between the Epeak energy, which is the peak energy in the \nu F_\nu spectrum, and the photon index (\Gamma) derived from a simple power-law model. The Epeak - \Gamma relation, assuming the typical smoothly broken power-law spectrum of GRBs, is \log Epeak = 3.258 - 0.829\Gamma (1.3 < \Gamma < 2.3). We take into account not only a range of Epeak energies and fluences, but also distributions for both the low-energy photon index and the high-energy photon index in the smoothly broken power-law model. The distribution of burst durations in the BAT GRB sample is also included in the simulation. Our correlation is consistent with the index observed by BAT and Epeak measured by the BAT, and by other GRB instruments. Since about 85% of GRBs observed by the BAT are acceptably fit with the simple power-law model because of the relatively narrow energy range of the BAT, this relationship can be used to estimate Epeak when it is located within the BAT energy range.Comment: 27 pages, 31 figures, accepted for publication in Ap

    Peak energy of the prompt emission of long Gamma Ray Bursts vs their fluence and peak flux

    Full text link
    The spectral-energy and (luminosity) correlations in long GRBs are being hotly debated to establish, first of all, their reality against possible selection effects. These are best studied in the observer planes, namely the peak energy E_peak_obs vs the fluence F or the peak flux P. In a recent paper we started to attack this problem considering all GRBs with known z and spectral properties. Here we consider instead all bursts with known E_peak_obs, irrespective of z, adding to those a sample of 100 faint BATSE bursts representative of a larger population. This allows us to construct a complete, fluence limited, sample, to study the selection/instrumental effects. We found that fainter bursts have smaller E_peak_obs than those of bright events. As a consequence, the E_peak_obs of these bursts is correlated with the fluence, though with a slope flatter than that defined by bursts with z. Selection effects, which are present, are shown not to be responsible for the existence of such a correlation. About 6% of these bursts are surely outliers of the E_peak-E_iso correlation (updated to include 83 bursts), since they are inconsistent with it for any z. E_peak_obs correlates also with P, with a slope similar to the E_peak-L_iso correlation.In this case there is only one sure outlier.The scatter of the E_peak_obs-P correlation defined by the BATSE bursts of our sample is smaller than the E_peak_obs-F correlation of the same bursts, while for the bursts with known z the E_peak-E_iso correlation is tighter than the E_peak-L_iso one. Once a very large number of bursts with E_peak_obs and z will be available, we thus expect that the E_peak-L_iso correlation will be similar to that currently found, whereas it is likely that the E_peak-E_iso correlation will become flatter and with a larger scatter.Comment: 17 pages, 8 figures. Accepted for publication in MNRA

    Testing the Epeak - Eiso relation for GRBs detected by Swift and Suzaku-WAM

    Full text link
    One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy Epeak) of the nu-F(nu) spectrum and the isotropic radiated energy, Eiso. Since most gamma-ray bursts (GRBs) have Epeak above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate Epeak values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected, one can accurately fit Epeak and Eiso and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of April 2009, there were 48 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 48 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.Comment: Accepted for publication in the Astrophysical Journa

    The first GRB survey of the IBIS/PICsIT archive

    Full text link
    The multi-purpose INTEGRAL mission is continuously contributing to Gamma Ray Burst (GRB) science, thanks to the performances of its two main instruments, IBIS and SPI, operating in the hard X-ray/soft gamma-ray domain. We investigate the possibilities offered to the study of GRBs by PICsIT, the high-energy detector of the IBIS instrument. We searched for transient episodes in the PICsIT light curves archive from May 2006 to August 2009, using stringent criteria optimized for the detection of long events. In the time interval under examination PICsIT provides an energy coverage from 208 to 2600 keV, resolved in eight energy channels, combined with a fine time resolution of 16 ms. PICsIT successfully observes GRBs in the 260-2600 keV energy range with an incoming direction spread over half the sky for the brightest events. We compiled a list of 39 bursts, most of which are confirmed GRBs or simultaneous to triggers from other satellites/instruments. We produced light curves with a time sampling down to 0.25 s in three energy intervals for all events. Because an adequate response matrix is not yet available for the PICsIT burst sample, we obtained a calibration coefficient in three selected energy bands by comparing instrumental counts with physical fluences inferred from observations with different satellites. The good time resolution provided by the PICsIT data allows a spectral variability study of our sample through the hardness ratio.Comment: 20 pages, 48 figures. Accepted for publication in A&

    Extended Emission from Short Gamma-Ray Bursts Detected with SPI-ACS/INTEGRAL

    Full text link
    The short duration (T90 < 2 s) gamma-ray bursts (GRBs) detected in the SPI-ACS experiment onboard the INTEGRAL observatory are investigated. Averaged light curves have been constructed for various groups of events, including short GRBs and unidentified short events. Extended emission has been found in the averaged light curves of both short GRBs and unidentified short events. It is shown that the fraction of the short GRBs in the total number of SPI-ACS GRBs can range from 30 to 45%, which is considerably larger than has been thought previously.Comment: 27 pages, 10 figure

    A general scheme for modeling gamma-ray burst prompt emission

    Full text link
    We describe a general method for modeling gamma-ray burst prompt emission. We find that for the burst to be produced via the synchrotron process unphysical conditions are required -- the distance of the source from the center of the explosion (RγR_\gamma) must be larger than 1017\sim 10^{17}cm and the source Lorentz factor \gta 10^3; for such a high Lorentz factor the deceleration radius (RdR_d) is less than RγR_\gamma even if the number density of particles in the surrounding medium is as small as 0.1\sim 0.1 cm3^{-3}. The result, Rγ>RdR_\gamma > R_d, is in contradiction with the early x-ray and optical afterglow data. The synchrotron-self-Compton (SSC) process fares much better. There is a large solution space for a typical GRB prompt emission to be produced via the SSC process. The prompt optical emission accompanying the burst is found to be very bright (\lta 14 mag; for z2z\sim2) in the SSC model, which exceeds the observed flux (or upper limit) for most GRBs. Continuous acceleration of electrons can significantly reduce the optical flux and bring it down to the observed limits. (Abridged)Comment: Published in MNRAS Jan 2008, 56 page

    Testing the E_p,i - L_p,iso - T_0.45 correlation on a BeppoSAX and Swift sample of gamma-ray bursts

    Full text link
    Using a sample of 14 BeppoSAX and 74 Swift GRBs with measured redshift we tested the correlation between the intrinsic peak energy of the time-integrated spectrum, E_p,i, the isotropic-equivalent peak luminosity, L_p,iso, and the duration of the most intense parts of the GRB computed as T_0.45 ("Firmani correlation"). For 41 out of 88 GRBs we could estimate all of the three required properties. Apart from 980425, which appears to be a definite outlier and notoriously peculiar in many respects, we used 40 GRBs to fit the correlation with the maximum likelihood method discussed by D'Agostini, suitable to account for the extrinsic scatter in addition to the intrinsic uncertainties affecting every single GRB. We confirm the correlation. However, unlike the results by Firmani et al., we found that the correlation does have a logarithmic scatter comparable with that of the E_p,i-E_iso ("Amati") correlation. We also find that the slope of the product L_p,iso T_0.45 is equal to ~0.5, which is consistent with the hypothesis that the E_p,i-L_p,iso-T_0.45 correlation is equivalent to the E_p,i-E_iso correlation (slope ~0.5). We conclude that, based on presently available data, there is no clear evidence that the E_p,i-L_p,iso-T_0.45 correlation is different (both in terms of slope and dispersion) from the E_p,i-E_iso correlation.Comment: 9 pages, 4 figures, revised version submitted to MNRA

    Strong bursts from the anomalous X-ray pulsar 1E 1547.0-5408 observed with the INTEGRAL/SPI Anti-Coincidence Shield

    Full text link
    In January 2009, multiple short bursts of soft gamma-rays were detected from the direction of the anomalous X-ray pulsar 1E 1547.0-5408 by different satellites. Here we report on the observations obtained with the INTEGRAL SPI-ACS detector during the period with the strongest bursting activity. More than 200 bursts were detected at energies above 80 keV in a few hours on January 22. Among these, two remarkably bright events showed pulsating tails lasting several seconds and modulated at the 2.1 s spin period of 1E 1547.0-5408. The energy released in the brightest of these bursts was of a few 10^43 erg, for an assumed distance of 10 kpc. This is smaller than that of the three giant flares seen from soft gamma-ray repeaters, but higher than that of typical bursts from soft gamma-ray repeaters and anomalous X-ray pulsars.Comment: Accepted for publication on The Astrophysical Journal Letter

    A giant, periodic flare from the soft gamma repeater SGR1900+14

    Get PDF
    Soft gamma repeaters are high-energy transient sources associated with neutron stars in young supernova remnants. They emit sporadic, short (~ 0.1 s) bursts with soft energy spectra during periods of intense activity. The event of March 5, 1979 was the most intense and the only clearly periodic one to date. Here we report on an even more intense burst on August 27, 1998, from a different soft gamma repeater, which displayed a hard energy spectrum at its peak, and was followed by a ~300 s long tail with a soft energy spectrum and a dramatic 5.16 s period. Its peak and time integrated energy fluxes at Earth are the largest yet observed from any cosmic source. This event was probably initiated by a massive disruption of the neutron star crust, followed by an outflow of energetic particles rotating with the period of the star. Comparison of these two bursts supports the idea that magnetic energy plays an important role, and that such giant flares, while rare, are not unique, and may occur at any time in the neutron star's activity cycle.Comment: Accepted for publication in Natur

    X-Ray Light Curves of Gamma-ray Bursts Detected with the All-Sky Monitor on RXTE

    Full text link
    We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.Comment: 15 pages with 20 figures and 2 tables. In emulateapj format. Accepted by ApJ
    corecore