49 research outputs found

    Genetic and molecular analysis of resistance to rust diseases in barley

    Get PDF
    The responses of 92 barley genotypes to selected P. hordei pathotypes was assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to determine known or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph2, Rph4, Rph5, Rph12, RphCantala alone or combinations of Rph2 + Rph4 and Rph1 + Rph2, whereas 52 genotypes lacked detectable seedling resistance to P. hordei. Five genotypes carried seedling resistance that was effective to all pathotypes tested, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes. Genetic studies conducted on 10 barley genotypes suggested that ‘Vada’, ‘Nagrad’, ‘Gilbert’, ‘Ulandra (NT)’ and ‘WI3407’ each carry one gene providing adult plant resistance to P. hordei. Genotypes ‘Patty’, ‘Pompadour’ ‘Athos’, ‘Dash’ and ‘RAH1995’ showed digenic inheritance of APR at one field site and monogenic inheritance at a second. One of the genes identified in each of these cultivars provided high levels of APR and was effective at both field sites. The second APR gene was effective only at one field site, and it conferred low levels of APR. Tests of allelism between resistant genotypes confirmed a common APR gene in all genotypes with the exception of ‘WI3407’, which based on pedigree information was genetically distinct from the gene common in ‘Vada’, ‘Nagrad’, ‘Patty’, ‘RAH1995’ and ‘Pompadour’. An incompletely dominant gene, Rph14, identified previously in an accession of Hordeum vulgare confers resistance to all known pathotypes of P. hordei in Australia. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/ ‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks from F3 lines using diversity array technology (DArT) markers located Rph14 to the short arm of chromosome 2H. Polymerase chain reaction (PCR) based marker analysis identified a single simple sequence repeat (SSR) marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cM in the populations ‘Baudin’/ ‘PI 584760’and ‘Ricardo’/‘PI 584760’, respectively. Seedlings of 62 Australian and two exotic barley cultivars were assessed for resistance to a variant of Puccinia striiformis, referred to as BGYR, which causes stripe rust on several wild Hordeum species and some genotypes of cultivated barley. With the exception of six Australian barley cultivars and an exotic cultivar, all displayed resistance to the pathogen. Genetic analyses of six Australian barley cultivars and the Algerian barley ‘Sahara 3771’, suggested that they carried either one or two major seedling resistance genes to the pathogen. A single recessive seedling resistance gene, Bgyr1, identified in ‘Sahara 3771’ was located on the long arm of chromosome 7H and flanked by restriction fragment length polymorphism (RFLP) markers wg420 and cdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using a doubled haploid population derived from the cross ‘Clipper’/‘Sahara 3771’ identified two major QTLs on the long arms of chromosomes 3H and 7H that explained 26 and 18% of total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to the seedling resistance gene Bgyr1. The second QTL was concluded to correspond to a single adult plant resistance gene designated Bgyr2, originating from cultivar ‘Clipper’

    PHP Desk

    Get PDF
    We use web browser to download HTML, CSS and JS code and execute it. This HTML/CSS/JS code is an output produced by server after processing PHP or JSP pages. So this implies that actual process is completed by server. This is the only disadvantage with this kind of system. We can avoid this problem, if we use our new proposed system called PHP Desk. PHP Desk system does not bring any t ime overhead to load pages as it completes all processes on client side only. In other words it will make application work fas t enough to look like they are real - time projects or desktop applications. As we have said that PHP Desk makes a web script look like it is executing as desktop application. It means a web developer c an become desktop developer. He/she does not need to le arn any special programming language or any technology to develop desktop applications. With their current knowledge they can build good quality desktop applications using PHP Desk system. PHP Desk helps to use Graphic s of Web Standards for desktop applica tions with the same ease of their use in Web Applications. PHP Desk is also useful to utilize CMS technologies for rapid development of new applications. PHP Desk system has to deal with many issues like encryption and decryption to provide security to dat a and code. This code is actually a PHP code which carries critical business logic and data storage information or database connections. This code is not to be d isclosed to clients and other developers. But if we deploy the project to client then the code will be accessible to client. To avoid this we have developed concepts like HK, ECF, SCG, and SCD. We encrypt PHP code using DES algorithm for security purpose. A key of 56 bits is used for encryption which is then processed by SHA algorithm to generate HK (Hashed Key) to be included as Digital Certificate. Code after encryption is called as ECF (Encrypted Code Format) which is generated by SCG (Secure Code Generator).SCG is developers tool. Developer will utilize it to provide security to t he code. SCD is supportive tool to client side Apache, which is responsible for decryption of Apaches decrypted code and it also communicate s with apache server. U sing the above proposed techniques we can overcome the security issues associated earlier

    Genetic and molecular analysis of resistance to rust diseases in barley

    Get PDF
    The responses of 92 barley genotypes to selected P. hordei pathotypes was assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to determine known or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph2, Rph4, Rph5, Rph12, RphCantala alone or combinations of Rph2 + Rph4 and Rph1 + Rph2, whereas 52 genotypes lacked detectable seedling resistance to P. hordei. Five genotypes carried seedling resistance that was effective to all pathotypes tested, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes. Genetic studies conducted on 10 barley genotypes suggested that ‘Vada’, ‘Nagrad’, ‘Gilbert’, ‘Ulandra (NT)’ and ‘WI3407’ each carry one gene providing adult plant resistance to P. hordei. Genotypes ‘Patty’, ‘Pompadour’ ‘Athos’, ‘Dash’ and ‘RAH1995’ showed digenic inheritance of APR at one field site and monogenic inheritance at a second. One of the genes identified in each of these cultivars provided high levels of APR and was effective at both field sites. The second APR gene was effective only at one field site, and it conferred low levels of APR. Tests of allelism between resistant genotypes confirmed a common APR gene in all genotypes with the exception of ‘WI3407’, which based on pedigree information was genetically distinct from the gene common in ‘Vada’, ‘Nagrad’, ‘Patty’, ‘RAH1995’ and ‘Pompadour’. An incompletely dominant gene, Rph14, identified previously in an accession of Hordeum vulgare confers resistance to all known pathotypes of P. hordei in Australia. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/ ‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks from F3 lines using diversity array technology (DArT) markers located Rph14 to the short arm of chromosome 2H. Polymerase chain reaction (PCR) based marker analysis identified a single simple sequence repeat (SSR) marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cM in the populations ‘Baudin’/ ‘PI 584760’and ‘Ricardo’/‘PI 584760’, respectively. Seedlings of 62 Australian and two exotic barley cultivars were assessed for resistance to a variant of Puccinia striiformis, referred to as BGYR, which causes stripe rust on several wild Hordeum species and some genotypes of cultivated barley. With the exception of six Australian barley cultivars and an exotic cultivar, all displayed resistance to the pathogen. Genetic analyses of six Australian barley cultivars and the Algerian barley ‘Sahara 3771’, suggested that they carried either one or two major seedling resistance genes to the pathogen. A single recessive seedling resistance gene, Bgyr1, identified in ‘Sahara 3771’ was located on the long arm of chromosome 7H and flanked by restriction fragment length polymorphism (RFLP) markers wg420 and cdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using a doubled haploid population derived from the cross ‘Clipper’/‘Sahara 3771’ identified two major QTLs on the long arms of chromosomes 3H and 7H that explained 26 and 18% of total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to the seedling resistance gene Bgyr1. The second QTL was concluded to correspond to a single adult plant resistance gene designated Bgyr2, originating from cultivar ‘Clipper’

    High-frequency adventitious shoot bud induction and shoot elongation of Chile pepper (Capsicúm annuum L.)

    No full text
    In vitro plantlet regeneration was obtained from cultured cotyledon and young leaf explants of five Indian chile pepper cultivars (Capsicum annuum L. evs. Gujarat-1, Gujarat-2, Guntur-4, Selection-49, and Jwala). Adventitious shoot buds (ASB) were regenerated directly from cotyledon and young leaf explants in all the five cultivars on media containing benzyladenine (BA) alone or in combination with 1-naphthaleneacetic acid (NAA). Regeneration frequency was highly influenced by cultivar explant type, media combination and their interactions, except the interaction between cultivar and explant, for number of ASB per explant. Percent contribution of individual source suggested that selection of explant type followed by medium combination and cultivars was essential for obtaining high-frequency ASB induction. Across different cultivars the young leaf explant was found to be the most responsive explant, while Murashige and Skoog (MS) medium containing BA alone (17.8, 26.6, and 35.5 μM) was found to be the best medium for the production of maximum number of ASB. Between the two explants, shoot elongation was observed with ASB obtained from young leaf explants on MS medium containing BA (2.2 and 4.4 μM) and gibberellie acid (GA3) (1.4, 2.9, 4.3 and 5.8 μM). The MS medium fortified with 4.4 μM BA+2.9μM GA3 was optimum for shoot elongation. Elongated shoots were rooted on liquid MS medium supplemented with 2.9 μM indole-3-acetic acid (IAA) and successfully established ex vitro

    Earthquake prognosis using machine learning

    No full text
    One of the deadliest and riskiest natural disasters is an earthquake. They often occur without a warning or any further alert. Therefore there was a need for its prognosis as it is extremely important for mankind as well as the environment. In this project, the successful application of machine learning techniques have been used for different elements of research which would be possible to use to make a more accurate short-term prognosis of upcoming earthquakes. Random Forest Classifier is the algorithm used for the research
    corecore