5 research outputs found

    The impact of ship emission controls recorded by cloud properties

    Get PDF
    The impact of aerosols on cloud properties is one of the leading uncertainties in the human forcing of the climate. Ships are large, isolated sources of aerosol creating linear cloud formations known as shiptracks. These are an ideal opportunity to identify and measure aerosol-cloud interactions. This work uses over 17,000 shiptracks during the implementation of fuel sulphur content regulations to demonstrate the central role of sulphate aerosol in ship exhaust for modifying clouds. By connecting individual shiptracks to transponder data, it is shown that almost half of shiptracks are likely undetected, masking a significant contribution to the climate impact of shipping. A pathway to retrieving ship sulphate emissions is demonstrated, showing how cloud observations could be used to monitor air pollution

    The Bristol CMIP6 Data Hackathon

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe Bristol CMIP6 Data Hackathon formed part of the Met Office Climate Data Challenge Hackathon series during 2021, bringing together around 100 UK early career researchers from a wide range of environmental disciplines. The purpose was to interrogate the under-utilised but currently most advanced climate model inter-comparison project datasets to develop new research ideas, create new networks and outreach opportunities in the lead up to COP26. Experts in different science fields, supported by a core team of scientists and data specialists at Bristol, had the unique opportunity to explore together interdisciplinary environmental topics summarised in this article

    Symmetric instability in cross-equatorial western boundary currents

    No full text
    The upper limb of the Atlantic Meridional Overturning Circulation draws waters with negative potential vorticity from the southern hemisphere into the northern hemisphere. The North Brazil Current is one of the cross-equatorial pathways in which this occurs: upon crossing the equator, fluid parcels must modify their potential vorticity to render them stable to symmetric instability and to merge smoothly with the ocean interior. In this work a linear stability analysis is performed on an idealized western boundary current, dynamically similar to the North Brazil Current, to identify features which are indicative of symmetric instability. Simple two-dimensional numerical models are used to verify the results of the stability analysis. The two-dimensional models and linear stability theory show that symmetric instability in meridional flows does not change when the non-traditional component of the Coriolis force is included, unlike in zonal flows. Idealized three-dimensional numerical models show anti-cyclonic barotropic eddies being spun off as the western boundary current crosses the equator. These eddies become symmetrically unstable \addd{a few degrees} north of the equator, and their PV is set to zero through the action of the instability. The instability is found to have a clear fingerprint in the spatial Fourier transform of the vertical kinetic energy. An analysis of the water mass formation rates suggest that symmetric instability has a minimal effect on water mass transformation in the model calculations; however, this may be the result of unresolved dynamics, such as secondary Kelvin Helmholtz instabilities, which are important in diabatic transformation
    corecore