3,968 research outputs found

    Successful repeated hypnotic treatment of warts in the same Individual: A case report

    Get PDF
    We report on a case of a female patient who was successfully treated with hypnosis for warts on 2 occasions separated by an interval of 7 years. Of note is the fact that she had low expectations regarding the benefit to be derived from hypnosis and did not at first appear to be highly hypnotizable

    Climate controlled aggradation and cyclicity ofcontinental siliciclastic sediments in Wolfcampian cyclothems, Permian, Hugoton embayment U.S.A. - Data Repository

    Get PDF
    The purpose of the Data Repository (DR) is twofold: 1) provide additional tables and figures and associated text that directly supplement the material provided in the paper, and 2) provide background material not available through publications or other channels. Two digital files, one for each purpose, are provided in the DR. The file covering background material is the appendix to Dubois Ph.D. dissertation, Ramp-scale geomodel for reservoir and stratigraphic analysis of the Hugoton field (Wolfcampian, midcontinent U.S.A.), completed in 2007. Two of the three dissertation' chapters have been published (Dubois et al., 2006a, 2006b) and the third is the current paper under review.Climate controlled aggradation and cyclicity of continental siliciclastic sediments in Wolfcampian cyclothems, Permian, Hugoton embayment U.S.A. is an outcome of a larger study focused on the Wolfcampian gas resource in the Hugoton field. That comprehensive multi-discipline study represents nearly a decade of effort by Kansas Geological Survey and industry scientists. It included the building of a vast 3D geocellular model of the entire Wolfcampian volume over the study area. The finely-layered 108-million-cell model provided a 3D view of the distribution of marine and continental siliciclastic lithofacies. Readers interested in details on Hugoton geomodel construction and a more thorough discussion of the marine portion of the cyclothems in this study were directed to published work (Dubois et al. 2006b, 2007)

    Entrapment of Bacteria in Fluid Inclusions in Laboratory-Grown Halite

    Get PDF
    This is the publisher's version, also available electronically from "http://online.liebertpub.com".Cells of the bacterium Pseudomonas aeruginosa, which were genetically modified to produce green fluorescent protein, were entrapped in fluid inclusions in laboratory-grown halite. The bacteria were used to inoculate NaCl-saturated aqueous solutions, which were allowed to evaporate and precipitate halite. The number, size, and distribution of fluid inclusions were highly variable, but did not appear to be affected by the presence of the bacteria. Many of the inclusions in crystals from inoculated solutions contained cells in populations ranging from two to 20. Microbial attachment to crystal surfaces was neither evident nor necessary for entrapment. Cells occurred exclusively within fluid inclusions and were not present in the crystal matrix. In both the inclusions and the hypersaline solution, the cells fluoresced and twitched, which indicates that the bacteria might have remained viable after entrapment. The fluorescence continued up to 13 months after entrapment, which indicates that little degradation of the bacteria occurred over that time interval. The entrapment, fluorescence, and preservation of cells were independent of the volume of hypersaline solution used or whether the solutions were completely evaporated prior to crystal extraction. The results of this study have a wide range of implications for the long-term survival of microorganisms in fluid inclusions and their detection through petrography. The results also demonstrate the preservation potential for microbes in hypersaline fluid inclusions, which could allow cells to survive harsh conditions of space, the deep geologic past, or burial in sedimentary basins

    Diagenetic responses to sea-level change: Integration of field, stable isotope, paleosol, paleokarst, fluid inclusion, and cement stratigraphy research to determine history and magnitude of sea-level fluctuation

    Get PDF
    Abstract Quantifying the history of changes in sea level is an important constraint for modeling sedimentary systems. Integration of diagenetic evidence for subaerial exposure with stratigraphic evidence of paleotopography is important for determining the history of relative changes in sea level. Surfaces of subaerial exposure can develop on marine strata from aggradation of sediment into the subaerial realm, from eustatic sea-level falls, or from uplift. Surfaces of subaerial exposure that result from aggradation alone can be distinguished from those that result from eustatic fall or uplift. If exposure surfaces directly overlie strata of subtidal origin or drape significant paleotopography, aggradation alone must be ruled out. The minimum relative fall in sea level can be quantified by tracing surfaces of subaerial exposure over reconstructed paleotopography or by determining the depth to which vadose-zone diagenesis occurred. Paleosols, paleokarst, trends in stable isotopes, calcite cement stratigraphy, calcite cement fabrics, and fluid inclusions provide diagenetic records that are useful in identifying ancient surfaces of subaerial exposure and determining the position of ancient vadose zones. Paleosols can be identified using the preserved records of desiccation and wetting, subaerial processes, and plant activity. Studies from the Pennsylvanian Holder Formation of New Mexico illustrate that paleosols can be laterally variable in nature and can be used to demonstrate a relative fall in sea level of at least 30 m (100 ft). Paleosol features can develop well below the subaerial surface, so caution must be used in applying this technique. Paleokarst is another useful record of subaerial exposure. Some karstification results in surface landforms, terra rossa paleosols, or vertical voids in which there is a clear relationship to an ancient surface of subaerial exposure. The depth of penetration of these karst features that developed in the vadose zone can be used as a minimum estimate of relative sea-level fall. For karst cavities that cannot be directly associated with a specific surface of subaerial exposure, the age of sediment fills or regional distribution of cavities can provide the most direct link to a particular surface of subaerial exposure. Whole-rock trends of relatively negative δ13C, relatively positive δ18O, and a baseline shift in δ18O can also reflect ancient surfaces of subaerial exposure. Variability of data from the Holder Formation shows that the trends predicted are not the result of stabilization in a homogeneous, relatively negative δ13C zone but the result of patchy cementation and replacement in a solution of heterogeneous carbon isotopic composition. Preservation of the most negative carbon signatures depends on sampling the highest volumes of soil-precipitated phases and those in closest proximity to organic structures in soils. Calcite cements with meniscus or pendant fabrics preserve a record of vadose diagenesis. Vertical pinchout of calcite-cement compositional zones may reflect surfaces of subaerial exposure. The lateral variability of such cements in the Pennsylvanian Holder Formation and the Lansing-Kansas City Groups of Kansas shows that such cements develop best in paleotopographically high settings. Fluid inclusions can provide a record of diagenesis in the vadose zone. Fluid inclusions trapped in the vadose zone are marked by variable ratios of vapor to liquid and all-liquid fluid inclusions. The distribution of such inclusions in Miocene rocks of Spain demonstrate a relative fall in sea level of at least 50-55 m (160-180 ft)

    Diagenetic responses to sea-level change: Integration of field, stable isotope, paleosol, paleokarst, fluid inclusion, and cement stratigraphy research to determine history and magnitude of sea-level fluctuation

    Get PDF
    Abstract Quantifying the history of changes in sea level is an important constraint for modeling sedimentary systems. Integration of diagenetic evidence for subaerial exposure with stratigraphic evidence of paleotopography is important for determining the history of relative changes in sea level. Surfaces of subaerial exposure can develop on marine strata from aggradation of sediment into the subaerial realm, from eustatic sea-level falls, or from uplift. Surfaces of subaerial exposure that result from aggradation alone can be distinguished from those that result from eustatic fall or uplift. If exposure surfaces directly overlie strata of subtidal origin or drape significant paleotopography, aggradation alone must be ruled out. The minimum relative fall in sea level can be quantified by tracing surfaces of subaerial exposure over reconstructed paleotopography or by determining the depth to which vadose-zone diagenesis occurred. Paleosols, paleokarst, trends in stable isotopes, calcite cement stratigraphy, calcite cement fabrics, and fluid inclusions provide diagenetic records that are useful in identifying ancient surfaces of subaerial exposure and determining the position of ancient vadose zones. Paleosols can be identified using the preserved records of desiccation and wetting, subaerial processes, and plant activity. Studies from the Pennsylvanian Holder Formation of New Mexico illustrate that paleosols can be laterally variable in nature and can be used to demonstrate a relative fall in sea level of at least 30 m (100 ft). Paleosol features can develop well below the subaerial surface, so caution must be used in applying this technique. Paleokarst is another useful record of subaerial exposure. Some karstification results in surface landforms, terra rossa paleosols, or vertical voids in which there is a clear relationship to an ancient surface of subaerial exposure. The depth of penetration of these karst features that developed in the vadose zone can be used as a minimum estimate of relative sea-level fall. For karst cavities that cannot be directly associated with a specific surface of subaerial exposure, the age of sediment fills or regional distribution of cavities can provide the most direct link to a particular surface of subaerial exposure. Whole-rock trends of relatively negative δ13C, relatively positive δ18O, and a baseline shift in δ18O can also reflect ancient surfaces of subaerial exposure. Variability of data from the Holder Formation shows that the trends predicted are not the result of stabilization in a homogeneous, relatively negative δ13C zone but the result of patchy cementation and replacement in a solution of heterogeneous carbon isotopic composition. Preservation of the most negative carbon signatures depends on sampling the highest volumes of soil-precipitated phases and those in closest proximity to organic structures in soils. Calcite cements with meniscus or pendant fabrics preserve a record of vadose diagenesis. Vertical pinchout of calcite-cement compositional zones may reflect surfaces of subaerial exposure. The lateral variability of such cements in the Pennsylvanian Holder Formation and the Lansing-Kansas City Groups of Kansas shows that such cements develop best in paleotopographically high settings. Fluid inclusions can provide a record of diagenesis in the vadose zone. Fluid inclusions trapped in the vadose zone are marked by variable ratios of vapor to liquid and all-liquid fluid inclusions. The distribution of such inclusions in Miocene rocks of Spain demonstrate a relative fall in sea level of at least 50-55 m (160-180 ft)

    Ecosystem Services in Decision Making: Time to Deliver

    Get PDF
    Over the past decade, efforts to value and protect ecosystem services have been promoted by many as the last, best hope for making conservation mainstream – attractive and commonplace worldwide. In theory, if we can help individuals and institutions to recognize the value of nature, then this should greatly increase investments in conservation, while at the same time fostering human well-being. In practice, however, we have not yet developed the scientific basis, nor the policy and finance mechanisms, for incorporating natural capital into resource- and land-use decisions on a large scale. Here, we propose a conceptual framework and sketch out a strategic plan for delivering on the promise of ecosystem services, drawing on emerging examples from Hawai‘i. We describe key advances in the science and practice of accounting for natural capital in the decisions of individuals, communities, corporations, and governments

    Ecosystem Services in Decision Making: Time to Deliver

    Get PDF
    Over the past decade, efforts to value and protect ecosystem services have been promoted by many as the last, best hope for making conservation mainstream – attractive and commonplace worldwide. In theory, if we can help individuals and institutions to recognize the value of nature, then this should greatly increase investments in conservation, while at the same time fostering human well-being. In practice, however, we have not yet developed the scientific basis, nor the policy and finance mechanisms, for incorporating natural capital into resource- and land-use decisions on a large scale. Here, we propose a conceptual framework and sketch out a strategic plan for delivering on the promise of ecosystem services, drawing on emerging examples from Hawai‘i. We describe key advances in the science and practice of accounting for natural capital in the decisions of individuals, communities, corporations, and governments
    • …
    corecore