120 research outputs found
DNA-decorated graphene chemical sensors
Graphene is a true two dimensional material with exceptional electronic
properties and enormous potential for practical applications. Graphene's
promise as a chemical sensor material has been noted but there has been
relatively little work on practical chemical sensing using graphene, and in
particular how chemical functionalization may be used to sensitize graphene to
chemical vapors. Here we show one route towards improving the ability of
graphene to work as a chemical sensor by using single stranded DNA as a
sensitizing agent. The resulting broad response devices show fast response
times, complete and rapid recovery to baseline at room temperature, and
discrimination between several similar vapor analytes.Comment: 7 pages, To appear in Applied Physics Letter
High On/Off Ratio Graphene Nanoconstriction Field Effect Transistor
We report a method to pattern monolayer graphene nanoconstriction field
effect transistors (NCFETs) with critical dimensions below 10 nm. NCFET
fabrication is enabled by the use of feedback controlled electromigration (FCE)
to form a constriction in a gold etch mask that is first patterned using
conventional lithographic techniques. The use of FCE allows the etch mask to be
patterned on size scales below the limit of conventional nanolithography. We
observe the opening of a confinement-induced energy gap as the NCFET width is
reduced, as evidenced by a sharp increase in the NCFET on/off ratio. The on/off
ratios we obtain with this procedure can be larger than 1000 at room
temperature for the narrowest devices; this is the first report of such large
room temperature on/off ratios for patterned graphene FETs.Comment: 18 pages, 6 figures, to appear in Smal
DNA-decorated Graphene Chemical Sensors
Graphene is a two-dimensional material with exceptional electronic properties and enormous potential for applications. Graphene’s promise as a chemical sensor material has been noted but there has been little work on practical chemical sensing using graphene, and in particular, how chemical functionalization may be used to sensitize graphene to chemical vapors. Here we show one route towards improving the ability of graphene to work as a chemical sensor by using single stranded DNA as a sensitizing agent. The resulting devices show fast response times, complete and rapid recovery to baseline at room temperature, and discrimination between several similar vapor analytes
Retrieval of Salt Marsh Above-ground Biomass From High-spatial Resolution Hyperspectral Imagery Using PROSAIL
Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, VA, where the morphology and biomass of the dominant plant species, Spartina alterniflora, varies widely. The high-resolution hyperspectral imagery allowed the detailed delineation of variations in above-ground biomass, which we retrieved from the imagery using the PROSAIL radiative transfer model. The retrieved biomass estimates correlated well with contemporaneously collected in situ biomass ground truth data ( R2=0.73 ). In this study, we also rescaled our hyperspectral imagery and retrieved PROSAIL salt marsh biomass to determine the applicability of the method across spatial scales. Histograms of retrieved biomass changed considerably in characteristic marsh regions as the spatial scale of the imagery was progressively degraded. This rescaling revealed a loss of spatial detail and a shift in the mean retrieved biomass. This shift is indicative of the loss of accuracy that may occur when scaling up through a simple averaging approach that does not account for the detail found in the landscape at the natural scale of variation of the salt marsh system. This illustrated the importance of developing methodologies to appropriately scale results from very fine scale resolution up to the more coarse-scale resolutions commonly obtained in airborne and satellite remote sensing
Communication of cancer screening results by letter, telephone or in person: A mixed methods systematic review of the effect on attendee anxiety, understanding and preferences
Attending and receiving a result from screening can be an anxious process. Using an appropriate method to deliver screening results could improve communication and reduce negative outcomes for screening attendees. Screening programmes are increasingly communicating results by letter or telephone rather than in-person. We investigated the impact of communication methods on attendees.
We systematically reviewed the literature on the communication methods used to deliver results in cancer screening programmes for women, focusing on screening attendee anxiety, understanding of results and preferences for results communication. We included qualitative and quantitative research. We searched MEDLINE, PsycINFO, CINAHL, Cochrane Library and Embase. Results were analysed using framework synthesis. 10,558 papers were identified with seven studies meeting the inclusion criteria.
Several key ideas emerged from the synthesis including speed, accuracy of results, visual support, ability to ask questions, privacy of results location and managing expectations.
Verbal communication methods (telephone and in-person) were preferred and facilitated greater understanding than written methods, although there was considerable variability in attendee preferences. Findings for anxiety were mixed, with no clear consensus on which method of communication might minimise attendee anxiety.
The low number of identified studies and generally low quality evidence suggest we do not know the most appropriate communication methods in the delivery of cancer screening results. More research is needed to directly compare methods of results communication, focusing on what impact each method may have on screening attendees
Factors associated with anxiety disorder comorbidity
Background
Anxiety and depressive disorders often co-occur and the order of their emergence may be associated with different clinical outcomes. However, minimal research has been conducted on anxiety-anxiety comorbidity. This study examined factors associated with anxiety comorbidity and anxiety-MDD temporal sequence.
Methods
Online, self-report data were collected from the UK-based GLAD and COPING NBR cohorts (N = 38,775). Logistic regression analyses compared differences in sociodemographic, trauma, and clinical factors between single anxiety, anxiety-anxiety comorbidity, anxiety-MDD (major depressive disorder) comorbidity, and MDD-only. Additionally, anxiety-first and MDD-first anxiety-MDD were compared. Differences in familial risk were assessed in those participants with self-reported family history or genotype data.
Results
Anxiety-anxiety and anxiety-MDD had higher rates of self-reported anxiety or depressive disorder diagnoses, younger age of onset, and higher recurrence than single anxiety. Anxiety-MDD displayed greater clinical severity/complexity than MDD only. Anxiety-anxiety had more severe current anxiety symptoms, less severe current depressive symptoms, and reduced likelihood of self-reporting an anxiety/depressive disorder diagnosis than anxiety-MDD. Anxiety-first anxiety-MDD had a younger age of onset, more severe anxiety symptoms, and less likelihood of self-reporting a diagnosis than MDD-first. Minimal differences in familial risk were found.
Limitations
Self-report, retrospective measures may introduce recall bias. The familial risk analyses were likely underpowered.
Conclusions
Anxiety-anxiety comorbidity displayed a similarly severe and complex profile of symptoms as anxiety-MDD but distinct features. For anxiety-MDD, first-onset anxiety had an earlier age of onset and greater severity than MDD-first. Anxiety disorders and comorbidity warrant further investigation and attention in research and practice
- …