224 research outputs found

    Phase lapses in scattering through multi-electron quantum dots: Mean-field and few-particle regimes

    Get PDF
    We show that the observed evolution of the transmission phase through multi-electron quantum dots with more than approximately ten electrons, which shows a universal (i.e., independent of N) as yet unexplained behavior, is consistent with an electrostatic model, where electron-electron interaction is described by a mean-field approach. Moreover, we perform exact calculations for an open 1D quantum dot and show that carrier correlations may give rise to a non-universal (i.e., N-dependent) behavior of the transmission phase, ensuing from Fano resonances, which is consistent with experiments with a few (N < 10) carriers. Our results suggest that in the universal regime the coherent transmission takes place through a single level while in the few-particle regime the correlated scattering state is determined by the number of bound particles.Comment: 14 pages, 3 figures, RevTex4 preprint format, to appear in Phys. Rev.

    Landau levels, edge states and magneto-conductance in GaAs/AlGaAs core-shell nanowires

    Get PDF
    Magnetic states of the electron gas confined in modulation-doped core-shell nanowires are calculated for a transverse field of arbitrary strength and orientation. Magneto-conductance is predicted within the Landauer approach. The modeling takes fully into account the radial material modulation, the prismatic symmetry and the doping profile of realistic GaAs/AlGaAs devices within an envelope-function approach, and electron-electron interaction is included in a mean-field self-consistent approach. Calculations show that in the low free-carrier density regime, magnetic states can be described in terms of Landau levels and edge states, similar to planar two-dimensional electron gases in a Hall bar. However, at higher carrier density the dominating electron-electron interaction leads to a strongly inhomogeneous localization at the prismatic heterointerface. This gives rise to a complex band dispersion, with local minima at finite values of the longitudinal wave vector, and a region of negative magneto-resistance. The predicted marked anisotropy of the magneto-conductance with field direction is a direct probe of the inhomogeneous electron gas localization of the conductive channel induced by the prismatic geometry

    Exact two-body quantum dynamics of an electron-hole pair in semiconductor coupled quantum wells: a time-dependent approach

    Get PDF
    We simulate the time-dependent coherent dynamics of a spatially indirect exciton (an electron-hole pair with the two particles confined in different layers) in a GaAs coupled quantum well system. We use a unitary wave-packet propagation method taking into account in full the four degrees of freedom of the two particles in a two-dimensional system, including both the long-range Coulomb attraction and arbitrary two-dimensional electrostatic potentials affecting the electron and/or the hole separately. The method has been implemented for massively parallel architectures to cope with the huge numerical problem, showing good scaling properties and allowing evolution for tens of picoseconds. We have investigated both transient time phenomena and asymptotic time transmission and reflection coefficients for potential profiles consisting of i) extended barriers and wells and ii) a single-slit geometry. We found clear signatures of the internal two-body dynamics, with transient phenomena in the picosecond time-scale which might be revealed by optical spectroscopy. Exact results have been compared with mean-field approaches which, neglecting dynamical correlations by construction, turn out to be inadequate to describe the electron-hole pair evolution in realistic experimental conditions.Comment: 12 two-column pages + 3 supplemental material pages, 9 figures, to appear on Phys.Rev.

    Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

    Get PDF
    We study the unitary propagation of a two-particle one-dimensional Schr\"odinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolution during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.Comment: 28 pages, 10 figures, preprint forma

    Symmetries in the collective excitations of an electron gas in core-shell nanowires

    Get PDF
    We study the collective excitations and inelastic light scattering cross-section of an electron gas confined in a GaAs/AlGaAs coaxial quantum well. These system can be engineered in a core-multi-shell nanowire and inherit the hexagonal symmetry of the underlying nanowire substrate. As a result, the electron gas forms both quasi 1D channels and quasi 2D channels at the quantum well bents and facets, respectively. Calculations are performed within the RPA and TDDFT approaches. We derive symmetry arguments which allow to enumerate and classify charge and spin excitations and determine whether excitations may survive to Landau damping. We also derive inelastic light scattering selection rules for different scattering geometries. Computational issues stemming from the need to use a symmetry compliant grid are also investigated systematically

    Magneto-photoluminescence in GaAs/AlAs core-multishell nanowires: a theoretical investigation

    Get PDF
    The magneto-photoluminescence in modulation doped core-multishell nanowires is predicted as a function of photo-excitation intensity in non-perturbative transverse magnetic fields. We use a self-consistent field approach within the effective mass approximation to determine the photoexcited electron and hole populations, including the complex composition and anisotropic geometry of the nano-material. The evolution of the photoluminescence is analyzed as a function of i) photo-excitation power, ii) magnetic field intensity, iii) type of doping, and iv) anisotropy with respect to field orientation.Comment: 11 pages, 11 figures, accepted for publication in Physical Review

    Field-controlled suppression of phonon-induced transitions in coupled quantum dots

    Full text link
    We calculate the longitudinal-acoustic phonon scattering rate for a vertical double quantum dot system with weak lateral confinement and show that a strong modulation of the single-electron excited states lifetime can be induced by an external magnetic or electric field. The results are obtained for typical realistic devices using a Fermi golden rule approach and a three-dimensional description of the electronic quantum states.Comment: REVTex4 class, 6 pages, 3 figures, to be published in Applied Physics Letter

    Predicting signatures of anisotropic resonance energy transfer in dye-functionalized nanoparticles

    Full text link
    Resonance energy transfer (RET) is an inherently anisotropic process. Even the simplest, well-known F\"orster theory, based on the transition dipole-dipole coupling, implicitly incorporates the anisotropic character of RET. In this theoretical work, we study possible signatures of the fundamental anisotropic character of RET in hybrid nanomaterials composed of a semiconductor nanoparticle (NP) decorated with molecular dyes. In particular, by means of a realistic kinetic model, we show that the analysis of the dye photoluminescence difference for orthogonal input polarizations reveals the anisotropic character of the dye-NP RET which arises from the intrinsic anisotropy of the NP lattice. In a prototypical core/shell wurtzite CdSe/ZnS NP functionalized with cyanine dyes (Cy3B), this difference is predicted to be as large as 75\% and it is strongly dependent in amplitude and sign on the dye-NP distance. We account for all the possible RET processes within the system, together with competing decay pathways in the separate segments. In addition, we show that the anisotropic signature of RET is persistent up to a large number of dyes per NP.Comment: 9 pages, 5 figures. Supplementary information available at http://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra22433d/unauth#!divAbstrac

    Aharonov-Bohm oscillations and electron gas transitions in hexagonal core-shell nanowires with an axial magnetic field

    Get PDF
    We use spin-density-functional theory within an envelope function approach to calculate electronic states in a GaAs/InAs core-shell nanowire pierced by an axial magnetic field. Our fully 3D quantum modeling includes explicitly the description of the realistic cross-section and composition of the sample, and the electrostatic field induced by external gates in two different device geometries, gate-all-around and back-gate. At low magnetic fields, we investigate Aharonov-Bohm oscillations and signatures therein of the discrete symmetry of the electronic system, and we critically analyze recent magnetoconductance observations. At high magnetic fields we find that several charge and spin transitions occur. We discuss the origin of these transitions in terms of different localization and Coulomb regimes and predict their signatures in magnetoconductance experiments

    Signatures of molecular correlations in the few-electron dynamics of coupled quantum dots

    Get PDF
    We study the effect of Coulomb interaction on the few-electron dynamics in coupled semiconductor quantum dots by exact diagonalization of the few-body Hamiltonian. The oscillation of carriers is strongly affected by the number of confined electrons and by the strength of the interdot correlations. Single-frequency oscillations are found for either uncorrelated or highly correlated states, while multi-frequency oscillations take place in the intermediate regime. Moreover, Coulomb interaction renders few-particle oscillations sensitive to perturbations in spatial directions other than that of the tunneling, contrary to the single-particle case. The inclusion of acoustic phonon scattering does not modify the carrier dynamics substantially at short times, but can damp oscillation modes selectively at long times.Comment: 4 pages, 5 figures, RevTex4 two-column format, to appear in Phys. Rev.
    • …
    corecore