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We study the effect of Coulomb interaction on the few-electron dynamics in coupled semiconductor quan-
tum dots by exact diagonalization of the few-body Hamiltonian. The oscillation of carriers is strongly affected
by the number of confined electrons and by the strength of the interdot correlations. Single-frequency oscilla-
tions are found for either uncorrelated or highly correlated states, while multifrequency oscillations take place
in the intermediate regime. Moreover, Coulomb interaction renders few-particle oscillations sensitive to per-
turbations in spatial directions other than that of the tunneling, contrary to the single-particle case. The
inclusion of acoustic phonon scattering does not modify the carrier dynamics substantially at short times, but
it can damp oscillation modes selectively at long times.
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Low-dimensional heterostructures enable direct probing
of the time evolution of carriers. In particular, charge oscil-
lations between coupled quantum structures have been mea-
sured in a number of different systems, such as Josephson
junctions,1 quantum wells,2 or quantum dots.3,4 Coupled
quantum dots �CQDs�, where the number of confined carriers
can be controlled experimentally, are a most interesting case
as they possess a discrete energy spectrum which stems from
the quantum confinement in all three spatial directions, thus
constituting the physical realization of the particle-in-the-box
problem. Understanding charge oscillations in these struc-
tures is not only of fundamental importance but also of tech-
nological relevance, since control of the coherent dynamics
of charge states is at the base of many proposals for novel
nanoelectronic devices5–7 and quantum logic gates.8–10 This
has motivated recent attempts to achieve control of charge
localization and dynamics in CQD systems by means of mi-
crowave excitations,11 static,4 and time-dependent12,13 elec-
tric fields.

Coherent charge oscillations between CQDs have been
recently demonstrated in the single-electron11 and
few-electron3,4 regimes. The origin and behavior of these os-
cillations in the former case are well understood: when a
single electron is placed in one of the dots of a CQD system,
with no other electron in it, it oscillates back and forth be-
tween the dots with a frequency given by the energy differ-
ence between the bonding and antibonding “molecular”
states. When a larger number of electrons are present, the
system behavior is much less understood. Recent experi-
ments working in the latter regime exposed a single-
frequency oscillation of the carriers,3,4 which was interpreted
in terms of an effective single-electron picture. However, in
general, one would expect more complicated oscillation pat-
terns owing to the nontrival density of states of Coulomb-
correlated few-body systems.13–16

In this Brief Report, we theoretically investigate charge
oscillations in few-electron CQDs. We show that, as an effect
of Coulomb correlations, the amplitude, period, and shape of
these oscillations are strongly dependent on the number of
electrons confined in the structure. Either single-frequency or
multifrequency charge oscillations occur, depending on the
strength of the correlations between molecular levels of the

CQD. Additional external magnetic fields are shown to pro-
vide a versatile means for tuning the period of the charge
oscillations. This unique behavior due to the full spatial
quantization is characteristic of quantum dots and clearly
differs from the plasmon oscillations in coupled quantum
wells.2,17 We also investigate the effect of the acoustic pho-
non bath and show that the different strengths of electron-
phonon interaction for different few-electron states lead to
selective suppression of modes in the multifrequency dynam-
ics.

We consider a system of two vertically coupled dots, as
depicted in the first panel of Fig. 1, populated with N inter-
acting electrons. The dots are gated GaAs /AlGaAs hetero-
structures, as those built in Ref. 18. The conduction-band
single-electron states are described within a three-
dimensional envelope function approximation, including
an electric field Ez along the z direction.19 For this cylindri-
cally symmetric configuration, the single-particle eigenfunc-
tions can be given the separable form �nmgs�r ,��
=�nm�x ,y��g�z��s���, with n and m radial and angular quan-
tum numbers of the Fock-Darwin state,16 g=0,1 labeling the
bonding and antibonding eigenfunctions associated with the
double-well potential, and s the spin orientation. In order to
compute the few-electron states exactly, we use a full con-
figuration interaction approach:20 the single-particle states
are populated with N electrons in all possible ways to con-
struct a basis of the Slater determinants �� j�, where j stands
for the set of many-body quantum numbers. Then, the three-
dimensional N-electron Hamiltonian is diagonalized. We first
assume a closed system, so that coherent charge oscillations
take place. In the last part of this Brief Report, we briefly
investigate the effect of phonons.

Initially, the CQD is subject to an electrostatic bias Ez
which favors localization in the lower dot �QD2�. Then, at
time t=0, the bias is removed �nonadiabatically� and the car-
riers start oscillating between the two dots. In order to simu-
late this process, the configuration interaction calculation de-
scribed above is performed twice: first, by taking Ez�0, then

Ez=0. The computed eigenstates are ��̃l�=� jc̃lj��̃ j� and
��l�=� jclj�� j�, with and without the Ez field, respectively.
We take, as the initial state of our few-particle system, the
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ground state in the biased condition ��̃0�. Its time evolution,
after the removal of the bias, can be computed from

��̃0�t�� = �
l

e−i/	Elt��l��̃0���l� . �1�

Here, the sum runs over the l unbiased states, whose energy

is El, participating in the spectral decomposition of ��̃0�. In
order to visualize the charge oscillations, we evaluate the
particle density inside the upper dot �QD1� N1. This magni-
tude has been resolved experimentally using pump-and-
probe techniques3 or single-electron transistors.4

In Fig. 1, we illustrate the time-dependent occupancy of
QD1 for N=1,2 ,3 ,4 ,5. Gray and black lines represent weak
and strong initialization biases �see caption�, respectively, as
schematically reported by the two V�z� profiles in the first
panel. For N=1, we retrieve the expected sinusoidal oscilla-
tion, whose frequency is given by the bonding-antibonding
energy separation 
EBAB. Both weak and strong biases com-
pletely localize the electron in QD2, thus giving rise to es-
sentially the same curve. However, as N increases, the ini-
tialization bias starts playing a critical role, as it determines
the number of electrons localized in each dot at time zero.
This, in turn, gives rise to very different oscillation patterns
�compare black and gray curves for N�1�.

An inspection of the few-electron oscillations in Fig. 1
shows that they exhibit multiple frequencies with different
amplitudes �most apparent in the N=2 panel�. This is a sig-
nature of Coulomb interaction in the interdot dynamics,
which can be understood from the coefficients of the spectral

decomposition of the biased state ��l ��̃0�: only the unbiased
states which have a finite overlap will contribute to the time

evolution in Eq. �1�. In the single-electron case, the in-plane
and vertical degrees of freedom decouple. The initial state is
localized in QD2 and results to be the linear combination of
one bonding and one antibonding unbiased states. This is
because the in-plane xy component of the wave function is
the same with and without bias, while, in z direction, the
ground biased state is given by �0�z�+�1�z�. Therefore, only
these two states contribute to the spectral decomposition, and
the oscillation frequency is given by their energy difference.
By contrast, in the few-electron case, Coulomb interaction
mixes the radial and vertical degrees of freedom, so that the
in-plane parts of the wave functions with and without Ez are
no longer identical. As a result, the spectral decomposition
may involve several pairs of bonding-antibonding states with
different radial wave functions. Each pair contributes to the
time evolution with its own frequency, given by its bonding-
antibonding energy splitting, and an amplitude that is propor-
tional to its spectral decomposition weight.

The mixing of radial and vertical degrees of freedom due
to Coulomb interaction renders charge oscillations sensitive
to perturbations in the xy plane, even though they do not
affect the single-particle tunneling. This is shown in Fig. 2,
where we compare single- and few-electron oscillations in
the presence and the absence of a magnetic field applied
along z. While the N=1 oscillation is insensitive to the field,
the frequencies of the N=2 and N=3 ones are increased.
This signature of electron-electron interaction could be used
in experiments to distinguish between the dynamics of inde-
pendent and correlated electrons. It also offers a unique way
to modulate the few-particle oscillation frequency.

To gain further insight into the role of Coulomb interac-
tion, in Fig. 3 we compare the oscillation patterns in a CQD
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FIG. 1. Schematic of the CQD
structure under study and occupa-
tion probability in the upper dot as
a function of time for N-electron
systems. Gray and black lines rep-
resent the oscillation patterns for
weak �Ez=50 kV /m� and strong
�Ez=170 kV /m� initialization bi-
ases, respectively. The dots have
thickness W=10 nm, lateral har-
monic confinement 	�0=3 meV,
and the interdot separation Lb

=8 nm. The prominent oscillation
period depends mainly on the
number of oscillating electrons
�note the two different scales for
the time�.
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FIG. 2. Occupation probability in the upper
dot as a function of time for N-electron systems.
Gray and black lines represent the oscillation pat-
terns with �B=5 T� and without �B=0 T� mag-
netic field, respectively. The CQD structure and
biases Ez are the same as in Fig. 1.
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with no interaction �panel b�, artificially quenched interac-
tion �panel c�, and regular interaction �panel d�. In all cases,
the electric field initializes both electrons in QD2, and yet
major changes take place as the Coulomb intensity is varied.
Again, the changes can be understood by analyzing the main
unbiased states contributing to the spectral decomposition of
the biased state. These are the s-shell singlets, �1, �2, and
�3, represented in Fig. 3�a� by their dominating electronic
configuration. In the schematic representation, electrons are
indicated by arrows, whose direction is the spin state, and
can occupy the single-particle bonding �lower horizontal
line� or antibonding �upper horizontal line� states. For van-

ishing Coulomb interaction, �̃0 is composed with equal
weight of the two bonding-antibonding pairs ��1+�2� and
��2+�3�. The frequency arising from the two pairs is iden-
tical, 
EBAB

12 =
EBAB
23 =Et �Et is the single-particle tunneling

energy�, and the oscillation shown in Fig. 3�b� is reminiscent
of a single-particle one. Switching on a weak Coulomb per-
turbation �Fig. 3�c�� introduces a small departure from this
limit, here, 
EBAB

12 =0.24 meV and 
EBAB
23 =0.20 meV: now,

the two pairs have similar amplitudes but different energies.
The superposition of the two harmonic motions gives rise to
a beat with modulated amplitude and frequency. Finally, for
a realistic Coulomb interaction �Fig. 3�d��, 
EBAB

12

=1.26 meV and 
EBAB
23 =0.04 meV, the weights of the two

bonding-antibonding pairs are very different. As a conse-
quence, there is one dominating oscillation mode with large
amplitude and low frequency and another with small ampli-
tude and high frequency.

The sizable changes of the bonding-antibonding energy
splittings in the presence of Coulomb interaction are an ef-
fect of the electronic correlation between molecular states,

often disregarded in previous studies of multiparticle dynam-
ics in coupled quantum dots13,14 and wells.17 The weaker the
interdot correlation, the stronger the multifrequency charac-
ter and vice versa. Therefore, one can control the nature of
the charge oscillations by designing CQD structures in the
regimes of either weak or strong interdot correlation with
respect to Et. This is shown in Fig. 4, where we compare the
N=2 and N=3 charge oscillations for different structural pa-
rameters, keeping a realistic value for the Coulomb interac-
tion throughout. In �a�, the interdot barrier is thin and hence
the tunneling energy is large. The large splitting between
molecular orbitals implies weak interdot correlation, which
leads to an oscillation pattern resembling the multifrequency
beat of Fig. 3�c�. In �b�, the radial confinement is increased,
which increases the Coulomb repulsion within the structure.
Since the vertical confinement is unchanged, interdot corre-
lation moves into the strong regime and a quasisingle-
frequency behavior, similar to that of Fig. 3�d�, is retrieved.
In �c�, the barrier is made thicker with respect to �a�, so that
the tunneling energy diminishes. This again enhances the in-
terdot correlation, leading to the quasisingle-frequency be-
havior. We point out that the small tunneling energy could be
the reason for the single-frequency oscillations reported in
Refs. 3 and 4 experiments.

The electron dynamics in CQDs is severely affected by
dissipative processes.21 In what follows, we shall investigate
which effects may appear in the few-electron charge oscilla-
tions due to the interaction with the 20 mK acoustic
�deformation-potential and piezoelectric� phonon bath. We
calculate the transition rate �li between the correlated states
��l� and ��i� according to Ref. 22 and employ the Pauli
master equation to evaluate the system’s time evolution:
dij

dt = i
	 �Ej −Ei�ij −�l

�lj+�li

2 ij +�ij�l�illl. We stress that, here,
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FIG. 3. �a� Main unbiased states contributing
to the spectral decomposition of the ground state
in the N=2 CQD of Fig. 1 at Ez=150 kV /m. Oc-
cupation probability of the upper dot in systems
with �b� null ��*=��, �c� partially quenched ��*

=103�, and �d� regular ��*=12.9� Coulomb
interactions.
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FIG. 4. Occupation probability in the upper
dot as a function of time for N=2 �upper row�
and N=3 �lower row�. Here, Ez=500 kV /m and
W=10 nm. The lateral confinement and interdot
barrier thickness in each column are �a� 	�0

=1 meV and Lb=6 nm, �b� 	�0=6 meV and Lb

=6 nm, and �c� 	�0=1 meV and Lb=10 nm.
Moreover, �*=12.9 in all cases.
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ij is an element of the density matrix corresponding to the
�unbiased� few-particle states, with energies Ei and Ej.

Figure 5 shows the resulting charge oscillations for a
CQD with N=2 �left panel� and N=3 �right panel�. In both
cases, the oscillation amplitude is clearly damped by the
phonons. However, since the transition rate is different for
each couple of initial and final states, the different modes
contributing to the multifrequency oscillations are damped at
different rates. As a consequence, in some CQD structures,
all but one mode are quickly suppressed, and the initially
multifrequency oscillation turns into a single-frequency one
at latter times �compare the insets in the N=2 panel for short
and long t�. For N�2, a higher number of correlated states
participate in the spectral decomposition of the biased state,
so that more oscillation modes show up in the charge oscil-
lation. As a result, it is difficult to find conditions where only
one mode survives the phonon damping �see insets of N=3
panel�. Therefore, this is unlikely to be responsible for the
single-frequency oscillations observed in Refs. 3 and 4.

In summary, we have shown that the few-electron dynam-
ics of CQDs is strongly affected by interdot electronic cor-
relations. Drastic changes in the oscillation pattern, from
simple sinusoidal to complicated beats, take place depending
on the correlation strength. Electronic interaction further ren-
ders few-electron dynamics very sensitive to perturbations in
all directions of the space and not only in that of the tunnel-
ing. Upon inclusion of phonon damping, few-electron charge
oscillations may experience an additional effect, namely, a
selective suppression of frequency modes. This is, however,
unlikely to be responsible for the single-particle-like oscilla-
tions reported in early experiments,3,4 which can be under-
stood as an effect of strong molecular correlation, due to the
small tunneling energy.
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FIG. 5. Occupation probability
as a function of time in N=2 and
N=3 CQDs subject to phonon in-
teraction. The insets zoom in at
short and long times. Note that the
N=2 case evolves into a single-
frequency oscillation. The CQDs
have 	�0, W=10 nm, Lb=6 nm
�N=2�, and Lb=8 nm �N=3� and
are initialized with a bias Ez

=500 kV /m.
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