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Landau levels, edge states, and magnetoconductance in GaAs/AlGaAs core-shell nanowires
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Magnetic states of the electron gas confined in modulation-doped core-shell nanowires are calculated for
a transverse field of arbitrary strength and orientation. Magnetoconductance is predicted within the Landauer
approach. The modeling takes fully into account the radial material modulation, the prismatic symmetry, and the
doping profile of realistic GaAs/AlGaAs devices within an envelope-function approach, and electron-electron
interaction is included in a mean-field self-consistent approach. Calculations show that in the low free-carrier
density regime, magnetic states can be described in terms of Landau levels and edge states, similar to planar
two-dimensional electron gases in a Hall bar. However, at higher carrier density, the dominating electron-electron
interaction leads to a strongly inhomogeneous localization at the prismatic heterointerface. This gives rise to
a complex band dispersion, with local minima at finite values of the longitudinal wave vector, and a region of
negative magnetoresistance. The predicted marked anisotropy of the magnetoconductance with field direction is
a direct probe of the inhomogeneous electron gas localization of the conductive channel induced by the prismatic
geometry.
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I. INTRODUCTION

Radially modulated semiconductor heterostructures, re-
alized from core-(multi)shell nanowires (CSNWs),1–5 offer
new perspectives in quantum electronics.6 Several crucial
steps have been taken toward the realization of high-mobility
devices based on this new class of nanomaterials and their
integration.7 Single-crystal, defect-free cores using several
III-V’s,8,9 selective radial doping,10 high-quality interfaces,11

and integration with Si substrates12 have been realized.
Figure 1 shows the schematics of a prototypical

GaAs/AlGaAs radial heterojunction. A GaAs nanowire,
which typically grows along the [111] direction radially
exposing the six {110} facets, is epitaxially overgrown
by an AlGaAs shell,13 including a doping layer,14 and a
GaAs capping layer, which protects the AlGaAs layer from
oxidation.15 Surface states of the outer GaAs layer, which
lie about the midgap energy, easily deplete the outer layers
of the structure, and an electron gas may form at the inner
GaAs/AlGaAs heterointerface.4

Such radial modulation-doped heterojunctions can host a
high-mobility electron gas, similarly to high-mobility two-
dimensional electron gases (2DEGs), but wrapped around the
core. However, due to the prismatic shape of the core and to
electron-electron interaction, in a CSNW channel the electron
gas will not be uniformly distributed at the heterointerfaces.
Mean-field calculations16,17 at zero-magnetic field show that
the electron gas distribution strongly depends on the free
charge density.12 Three regimes can be identified16 for the
conductive channel in GaAs CSNWs: (i) a low-density regime
with the electron gas cylindrically distributed in a quasi-1D
channel into the GaAs core; (ii) an intermediate-density
regime, with the central region of the core depleted and the
electron gas mainly localized on a cylindrical surface next
to the inner heterointerface; and (iii) a high-density regime
with the electron gas preferentially localized into a set of
quasi-1D channels, strongly tunnel coupled, and concentrated
at the edges between different facets of the hexagonal core to

maximize the interelectron distance. Interestingly, electronic
states showing localization patterns in a similar fashion to this
last regime have been recently demonstrated in two separate
works on radially heterostructured hexagonal NWs,18,19 both
combining optical measurements with theoretical simulations.
In these studies, however, the strong localization effects arise
from the spatial confinement occurring in narrow coaxial
quantum wells. Conductive channels in CSNWs are very
sensitive to an external field and may be reshaped by an
external gate, an important aspect, e.g., for gate-all-around
(GAA) FET design.12,20

Magnetic states in wrapped heterojunctions have not
been investigated so far. Studies of the magnetic states on
a cylindrical surface21–23 have been extended to prismatic
surfaces.24 These qualitative studies allow to highlight the
influence of local topology on magnetic states in, e.g., a
narrow wrapped around quantum well,19 but do not apply
to doped heterojunctions, since electron-electron interaction
is completely neglected. Unfortunately, no magnetotransport
experiment in the quantum Hall regime in CSNWs is available
to date.

In this paper, we report self-consistent field calculations of
realistic CSNWs subjected to a transverse magnetic field in the
quantum Hall regime. Our target systems are remotely doped
GaAs/AlGaAs single radial heterojunctions, as the one shown
in Fig. 1. Magnetic states are calculated in different charge
density regimes and different field orientations. Calculations
show that magnetic states can be described in terms of
Landau levels and edge states, similarly to 2DEGs, only in
the low free-carrier density regime. At higher density, the
dominating electron-electron interaction leads to a strongly
inhomogeneous localization at the prismatic heterointerface,
giving rise to a complex band dispersion. The ensuing
negative magnetoresistance and the marked anisotropy of the
magnetoconductance with respect to field direction are a direct
probe of the inhomogeneous electron gas localization of the
conductive channel.
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FIG. 1. (Color online) Schematics of the prototypical radial
heterojunction studied in this work. Remote doping in the middle of
the AlGaAs layer results in an electron gas at the inner GaAs/AlGaAs
interface. A transverse uniform magnetic field is applied. (Inset) Axis
definitions and angle θ formed by the magnetic field.

II. METHOD

Within the effective mass, single parabolic band approxi-
mation, the Hamiltonian in an external magnetic field reads

Ĥ = 1

2
(P̂ − e A(R))

1

m∗(R)
(P̂ − e A(R))

+EC(R) − e V (R), (1)

where R = (x,y,z), P̂ is the conjugate momentum operator,
A(R) is the magnetic vector potential, and m∗(R) is the
position dependent, isotropic electron effective mass. EC(R)
and V (R) are, respectively, the local conduction band edge
and the self-consistent potential generated by other electrons
and the fully ionized, static donors.

To describe a transverse magnetic field, namely, perpendic-
ular to the nanowire axis, we employ the gauge A(R) = B ·
(0,0,�(R)), with �(R) defined as �(R) = y cos θ − x sin θ .
Different orientations of the transverse field are obtained by
the appropriate azimuthal angle θ , which is measured with
respect to the x axis (see Fig. 1). θ = 0 corresponds to a field
oriented along a maximal diameter of the hexagonal core,
while θ = 30◦ corresponds to a field that is perpendicular to
a facet of the nanowire.

A uniform magnetic field in the direction transverse to the
CSNW does not break the translational invariance along the
wire axis, which is taken along the z direction. Therefore
the 3D electron envelope function �n(R) can be factorized
in a 1D plane wave and a 2D envelope function, �n,k(R) =
eikzφn,k(r), and labeled by the principal quantum number n

and the electron momentum along the z direction, k, with
r = (x,y). By inserting �n,k into the Hamiltonian (1), the
following equation for φn,k(r) is obtained:{

−h̄2

2
∇r

[
1

m∗(r)
∇r

]
+ 1

2
m∗(r)ωc(r)2(�(r) − �0)2

+EC(r) − e V (r)

}
φn,k(r) = εn,kφn,k(r). (2)

Here, ωc is the cyclotron frequency, ωc(r) = e B/m∗(r), and
�0 = k l2

B , with lB = √
h̄/e B being the magnetic length.

Hence, in this gauge, the transverse magnetic field amounts to
an effective parabolic potential lying in the plane defined by the
field direction and the normal to wire axis. �0 is the vertex of

the harmonic potential, which is displaced from the axis of the
hexagonal section by k l2

B along the direction perpendicular to
the field. This gauge is equivalent to the Landau gauge, which
in a planar Hall bar geometry gives rise to LLs in the bulk
of the bar and ESs near to the boundaries.25 Here, however,
there are no electrostatically defined edges. In fact, lateral
confinement in the direction perpendicular to the field results
from charge redistribution in the complex three-dimensional
structure, which has to be calculated self-consistently.

In zero magnetic field, subbands are parabolic, εn,k =
ε0
n + h̄2k2/2m∗, with ε0

n the energy at k = 0, and φn,k(r) is
k-independent. However, in the presence of the magnetic
term, the subbands develop nontrivial dispersions, strongly
dependent on the self-consistent potential entering in Eq. (2),
as we shall see in the next section.

We solve Eq. (2) for magnetic fields of arbitrary strength
and orientation at several k points on a uniform grid in
[−kmax,kmax], with kmax fairly above the Fermi wave vector.
Then, the electron density is obtained from

n(r) = 2
∑

n

∫ kmax

−kmax

dk

2 π
f (εn,k − μ,T )|φn,k(r)|2, (3)

where the leading 2 on the right-hand-side accounts for spin
degeneracy and f (εn,k − μ,T ) is the Fermi occupation for
each (k,n) state given by

f (εn,k,μ,T ) = 1

1 + e(εn,k−μ)/kB T
, (4)

μ, T and kB being, respectively, the Fermi energy, temperature,
and Boltzmann constant. The chemical potential μ is pinned by
the surface states of the outer GaAs layer and in our calculation
is fixed exactly at midgap.

Once the electron density is determined, the Hartree
electrostatic potential VH due to the free charge and the ionized
impurities is obtained from Poisson equation

∇ε(r)∇VH (r) = 1

ε0
e[n(r) − ρD(r)]. (5)

Here, ρD(r) is the volume density of dopants, which are
considered to be fully ionized, while ε(r) and ε0 are the
position-dependent dielectric constant and the vacuum per-
mittivity. An exchange-correlation correction calculated is
added to the electrostatic potential within the local density
approximation.26,27 We checked that its contribution does not
exceed few percent of the mean-field potential.28

Equations (2) and (5) are numerically integrated iteratively,
with Dirichlet boundary conditions, through a box integration
method on a triangular grid with hexagonal elements. The
latter discretization, having the same symmetry of the inte-
gration domain, does not introduce numerical artifacts at the
boundaries. No spatial symmetry is imposed, however. The
original D6h symmetry of the Hamiltonian is reduced to C2

by the transverse field and no degeneracies are therefore to be
obtained in general.

The whole procedure is iterated until self-consistency is
reached, which we consider to occur at the particularly strict
condition that the relative variation of the charge density
between two consecutive iterations is lower than 0.001 at any
point of the discretization domain. The simulation procedure
has been checked against available data for planar 2DEG
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devices, as MOS capacitors.29 We refer the reader to Ref. 16
for more technical details about the numerical approach.

Once the convergence is achieved, energies and subbands
occupations allow to estimate the ballistic conductance of the
NW by means of the linear-response Landauer formula,

G = e2

h

∑
n

∫
Bn

−∂f (E − μ,T )

∂E
dE. (6)

where the integral is performed on each (nonparabolic) energy
band Bn, from E(−kmax) to E(kmax), and gives a significant
contribution only around the crossings of the band with the
Fermy energy μ.

III. MAGNETIC STATES

We next discuss magnetic states of the prototypical
GaAs CSNW shown in Fig. 1 for different charge density
regimes, obtained changing the doping concentration in the
simulation.16 We shall find it important to distinguish between
two directions of the magnetic field, either perpendicular to
a facet or along a maximal diameter (joining two opposite
vertices). In the next section, we will show that the anisotropic
response to the field is a direct evidence of the inhomogeneous
localization of the electron gas.

Our reference sample4 is a CSNW with a GaAs core having
a facet-to-facet distance of 80 nm. The core is surrounded by
a 50-nm-thick Al0.3Ga0.7As shell and a 10-nm-thick GaAs
capping layer. The system is n doped with a constant density
of donors ρD , uniformly distributed in a 10-nm-thick layer,
placed in the middle of the Al0.3Ga0.7As shell. The Fermi
energy is pinned by GaAs surface states at the middle of the
gap and is taken as the reference level for energies, i.e., μ = 0.

All calculations have been performed assuming a tem-
perature of 4K. The position dependent material parame-
ters employed in the calculations are m∗(GaAs) = 0.067,
ε(GaAs) = 13.8, Ec(GaAs) = 0.715 eV, m∗(Al0.3Ga0.7As) =
0.092, ε(Al0.3Ga0.7As) = 12.24, and Ec(Al0.3Ga0.7As) =
0.999 eV.

A. Low-density regime

We start the discussion from the low doping-density
regime, with ρD = 1.44 × 1018 cm−3, which gives a linear
free-electron density 0.014 × 107 cm−1. Figure 2 shows
the subband dispersions in positive values of the in-wire
momentum k (the dispersion in negative k is symmetric)
at two representative values of the magnetic field, B = 4 T
(left) and B = 8 T (right), and for the two orientations of the
field shown in the insets. Note that the lowest subband edge
lies slightly above the Fermi energy (dashed line), so that
the self-consistent charge density (see Fig. 3, top panel) is
determined by a fractional thermal occupation of the lowest
subband only. The charge density, which at zero field consists
of a cylindrically symmetric quasi-1D channel extended over
the GaAs core, is only slightly distorted by the field. It
elongates in the direction normal to the field itself and develops
two lobes. This is a stronger effect with the field perpendicular
to the facets, as in this configuration the lateral electrostatic
confinement is weaker.
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FIG. 2. Magnetic levels vs the in-wire momentum k for a CSNW
(see text) doped with ρD = 1.44 × 1018 cm−3 at two representative
fields, as indicated. The horizontal dashed lines show the Fermi
energy position. (Top) Field oriented perpendicular to the facets.
(Bottom) Field oriented along a diameter.

The overall dispersion of the lowest subbands in Fig. 2
strongly resembles the LLs/ESs picture, familiar from planar
2DEGs in a Hall bar geometry.25 As the field is increased, the
zero-field, parabolic dispersions at low k gradually flatten, and
form highly degenerate bands, similarly to LLs. At the two
representative fields shown in Fig. 2, the flat region extends
for a wide k range. In fact, the magnetic length lB , which at 4
and 8 T is ∼13 and ∼9 nm, respectively, is much smaller than
the width of the GaAs core. At larger k, where kl2

B approaches
the radius of the GaAs core, or, equivalently, the bottom of the
magnetic harmonic potential approaches the lateral AlGaAs
barriers by ∼lB , the subbands bend up monotonically, similarly
to ESs in a Hall bar.

The corresponding envelope functions are shown in the
bottom panel of Fig. 3 for selected (n,k) values. At k = 0
electrons form LLs localized in the center of the structure,
extending laterally, i.e., in the direction orthogonal to the field,
by about lB . States with zero (n = 1,2) or one (n = 4) node
in the vertical direction (i.e., along the direction of the field)
correspond to the first and second LLs, respectively. At larger
k (see kl2

B = 25 nm in Fig. 3) states are displaced laterally, and
correspond to ESs in a standard Hall bar (states with negative
k would be displaced in the opposite direction). Note that,
depending on the field orientation, ESs localize either along
a facet or an edge between two facets of the GaAs/AlGaAs
interface.

The large thickness of the CSNW in the vertical direction
allows for several 1D subbands between successive LLs,
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FIG. 3. (Color online) Self-consistent charge density and enve-
lope functions squared corresponding to magnetic states shown in
Fig. 2. (Top) 2D self-consistent charge density at zero and finite
magnetic field, as indicated, with the field oriented as shown by the
arrows. (Bottom) Envelope functions squared at B = 8 T for selected
values of (n,k), as indicated by labels. In each row, the field is oriented
as shown by the white arrow in the center/bottom map.

similarly to an electron gas in a wide quantum well.30 For
instance, in Fig. 2(b) the first three subbands correspond to the
first LL. They barely shift with the field [compare Figs. 2(a)
and 2(b)], since their energy is mainly determined by the
vertical confinement. On the other hand, the fourth subband
corresponds to the second LL and its energy does shift linearly
with the field.

Despite the anisotropic, hexagonal spatial confinement, the
subband dispersions for the two field orientations are similar,
which is consistent with the almost isotropic self-consistent
electron density at B = 0 shown in Fig. 3. The subbands in
Figs. 2(c) and 2(d) tend to be more dispersive than in Figs. 2(a)
and 2(b), since for the former field orientation, as k moves
to large values, the states are pushed against a facet of the
hexagonal core, and are continuously squeezed (along the field
direction, see Fig. 3) by the other two facets.

B. Intermediate-density regime

We next consider a CSNW with a slightly larger density
of dopants, ρD = 1.5 × 1018 cm−3, corresponding to a linear
electron density ≈0.096 × 107 cm−1, about seven times larger
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FIG. 4. Same as Fig. 2, but with ρD = 1.5 × 1018 cm−3.

than in the previous case. The subband dispersions, and
the self-consistent charge densities and envelope functions,
are shown in Figs. 4 and 5, respectively, at the same two
representative fields of the previous case. The zero-field
self-consistent charge density, shown in Fig. 5, top, consists of
a hollow isotropic shell with finite thickness.16 Therefore it is
expected that magnetic states resemble those of a cylindrical
electron gas, which has been previously studied in the
context of Carbon nanotubes21 or cylindrical semiconductor
systems.22 Indeed, although the overall subband dispersion
still resembles the LLs/ESs structure, the lowest subband is
not monotonic. This type of dispersion is in agreement with
single-particle calculations of the electron gas in the 2D surface
of a cylinder.22 The energy minimum corresponds to wave
vectors such that electronic states may localize on the flanks
of the structure, with respect to the magnetic field, i.e., in
the regions where the normal component of the field, and
therefore the field contribution to the energy, vanishes locally.
There, the residual vertical component of the field changes
sign and, therefore, acts as a restoring force, keeping electrons
bound to quasi-1D channels. Semiclassically, these correspond
to twisting or oscillating orbits22,23 and add to the usual ESs
or skipping orbits typical of planar 2DEGs.31

Having two density of states singularities in the lowest
subband, one at k = 0 and one at a finite k, the Fermi energy
is pinned to one of the two, depending on the field intensity.
Note that the k = 0 states are localized on top or bottom of
the structure with respect to the field direction, while states
near to the minimum at k �= 0 are localized on one side (which
one depending on the sign of k). Accordingly, when the Fermi
energy is pinned at k = 0 the charge density (not shown) is
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FIG. 5. (Color online) Same as Fig. 3, but corresponding to
magnetic states in Fig. 4.

nearly isotropic and similar to the zero-field case, while when
it is pinned at k �= 0, the electron density is concentrated in two
lobes parallel to the field direction (see Fig. 5, top), each being
composed of states, which are propagating in the direction of
k or in the opposite direction.

The two lowest subbands are now nearly degenerate, since
for this larger density the charge is pushed on opposite sides by
the electron-electron interaction, similarly to a large quantum
well,30 forming a symmetric/antisymmetric (SAS) pair (see
Fig. 5, states with n = 1,2). The pair is split in energy
as k moves from k = 0 since, for these ESs, the vertical
confinement is stronger and the tunneling energy is enhanced.
Note also that, despite the apparent cylindrical symmetry at
zero field, the response of the system to the magnetic field
is more anisotropic than in the previous, low-density case,
particularly for large fields and higher subbands, as can be
seen comparing the top and bottom panels in Fig. 4.

C. High-density regime

Finally, we consider the case of a NW with a density
of dopants ρD = 1.7 × 1018 cm−3, corresponding to a linear
electron density 0.425 × 107 cm−1, about four times larger
than the previous case. This is the most complex situation,
but possibly the most relevant one from the point of view
of high-mobility transport experiments. We show in Figs. 6
and 7 the subband dispersions and the self-consistent charge
distributions and envelope functions, respectively. Coulomb
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FIG. 6. Same as Fig. 2, but with ρD = 1.7 × 1018 cm−3.

contribution is now dominating the Hamiltonian, and in this
regime the zero field electron gas concentrates at the edges
between two facets of the GaAs hexagonal core (Fig. 7, top-left
panel) clearly exposing the D6h symmetry of the CSNW.
A transverse field further reduces the symmetry, although

FIG. 7. (Color online) Same as Fig. 3, but corresponding to
electron states in Fig. 6. Charge densities and squared envelope
functions are shown for both B = 5 and 15 T .
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this is mainly observed in the envelope functions, while the
self-consistent electron density is barely affected by the field.

Let us now discuss separately the two field configurations,
and first discuss the situation with the magnetic field applied
perpendicularly to the facets. Because of the strong localiza-
tion at the GaAs/AlGaAs interfaces, due to electron-electron
interaction, the lowest subbands form a SAS pair which
is nearly degenerate at small k (see Fig. 6). As the wave
vector increases, both subbands bend down, corresponding
to the formation of laterally confined states described also in
the previous case, while SAS states with larger k split, since
the magnetic field confines the wave functions laterally. We
show how this happens at the two representative fields 5 T
and 15 T in Fig. 7, corresponding to Fermi energy pinning at
the third subband and at the lowest SAS doublet, respectively.
At the lower field, the situation is similar to lower densities,
with LLs smoothly evolving in ESs through one minimum,
because the magnetic confinement has a larger lengthscale
than the electrostatic confinement at the edges. In contrast,
at 15 T, although the states have a flatter dispersion, which
is expected because of the larger field, they go through a
double minimum. This is because at a specific k value the
magnetic potential is centered exactly at the position of the
self-consistent minima at the edges between the facets and
with a similar confinement length (see kl2

B = 16 nm in Fig. 6).
At larger k, ESs develop, as in the previous cases. The excited
subbands still develop LL-like flat band dispersion because
they are spread over the center of the GaAs core, in a situation
similar to the subbands illustrated in Fig. 2. Correspondingly,
the magnetic field applied perpendicular to the facets slightly
favors localization in the two edges along the orthogonal
direction, but since the field adds to the strong self-consistent
field here, this is only a minor effect (see Fig. 7, top right).

We next consider a magnetic field applied in the direction
of a maximal diameter of the hexagonal section. As shown
in Fig. 6 (bottom panels), the flat band dispersion of a LL
is now hardly observed even in higher bands, since for this
orientation, as k increases the vertical (parallel to the field)
spatial confinement decreases continuously (see Fig. 7, bottom
panels). The two lowest subbands, which are nearly degenerate
at k = 0, bend up with k and relax the degeneracy for the
same reason, finally developing a minimum at finite k. The
corresponding evolution of the wave functions with k is
illustrated in the bottom panels of Fig. 7. At large field, the
dispersion is almost flat, until the states develop a minimum,
which is much deeper than in the previous field orientation.
Indeed, this corresponds to states which are delocalized along
a facet.

In Fig. 8, we show the density of states of the NW with
a density of dopants ρD = 1.7 × 1018 cm−3 for both field
orientations. LLs are easily identified at high fields as narrow
peaks shifting linearly with the field. Since the Fermi energy
is fixed by surface states at midgap, the lowest level is actually
flat and pinned at the Fermi energy at sufficiently large field
(correspondingly, as the field increases, the bottom of the
self-consistent potential moves linearly at lower energies).
Each LL comes as a set of parallel bands arising from the
vertical confinement. However, the DOS cannot be described
only in terms of highly degenerate LLs. This is exemplified
by the two DOS profiles shown in Fig. 8 at selected magnetic

FIG. 8. (Color online) Color intensity: normalized DOS vs
transverse magnetic field intensity, with the field oriented as indicated
in the insets. The Fermi energy is shown by a horizontal dashed line.
In the left and right panels, a profile of the DOS at a specific field,
indicated by a vertical line, is shown.

fields, which show a rich structure on top of the LL peaks,
which is due to the dispersive states localized on the flanks
of the structure.24 In particular, one can recognize high DOS
below the lowest LL at intermediate fields.

FIG. 9. (Color online) (a) Magnetoconductance at three different
doping densities: ρD = 1.7 × 1018 (upper black curves), 1.5 × 1018

(middle blue curves), and 1.44 × 1018 cm−3 (lower green curves).
Solid lines: field oriented along a maximal diameter. Dashed lines:
field oriented normal to a facet. Insets: magnetic states and intra-sub-
band excitations contributing to the conductance at the three values
of B indicated by the arrows of the main plot, in the same order.
(b) Magnetoconductance anisotropy from Eq. (6).
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IV. MAGNETOCONDUCTANCE

We next focus on the magnetoconductance of a radial
heterojunction. It is useful to recall that in a planar Hall
bar or in high-mobility quasi-1D channels, as quantum
wires32 or quantum point contacts,33 the high-field longitudinal
magnetoconductance typically shows a monotonic decrease
with increasing field with quantized plateaus in units of
2e2/h (for spinless electrons) at sufficiently low temperature,
corresponding to field-induced depopulation of the current-
carrying ESs emerging from the highly degenerate LLs with
monotonic dispersion.

Although CSNWs are quasi-1D systems, magnetic states
have a complex subband structure and DOS, which can be
exposed in the peculiar magnetoconductance behavior. In
Fig. 9(a), we show the calculated magnetoconductance for
the three doping densities considered before at T = 4 K. For
the lowest doping density, the conductance is G < 1 even at
zero field due to the partial occupation of the first subband.
As the magnetic field increases, the NW depletes completely
and the conductance vanishes. At the intermediate doping
density (ρD = 1.5 × 1018 cm−3), there are three occupied
subbands at zero field. The second and third subbands are
degenerate by symmetry at zero field, but when a finite
magnetic field is applied, the degeneracy is removed and the
two subbands become consecutively depleted. As a result,
the magnetoconductance rapidly reduces from G 	 3 to 	1.
The large plateau at G 	 1 corresponds to the pinning of the

Fermi level to the lowest subband (see, e.g., Fig. 4). Finally, for
the highest density of dopants there are eight subbands crossing
the Fermi level at low fields. The magnetic field depletes
the subbands up to B ∼ 6 T, where the magnetoconductance
attains a minimum with G 	 2. Larger fields result in increased
conductance, which finally falls to G 	 2 as the lowest
subband is depleted.

The origin of the negative magnetoresistance is illustrated
in the insets of Fig. 9(a) (subbands are shown for field oriented
along the diameter). At B = 4 T (left inset), there are four
states at the Fermi energy with a positive slope. At B = 6 T
(center inset), the Fermi energy lies between the second and
third subbands and only two channels are accessible, in a
region with a low DOS (see Fig. 8). In large fields, the
conductance increases due to the non monotonic bending of
the two lowest subbands, which results in additional channels
at higher fields (as for B ∼ 9 T, right inset).

The magnetoconductance also shows substantial ani-
sotropy. Note that the negative magnetoresistance region,
shown in Fig. 9(a) by the sample with larger doping, exists for
both orientations of the field, and it is more pronounced when
the field is oriented along a maximal diameter. The anisotropy

G1 − G2

(G1 + G2)/2
× 100 , (7)

where G1,G2 are the magnetoconductances for the field
applied perpendicular to a facet and along a diameter,

FIG. 10. (Color online) Magnetoconductance at selected temperatures: 0.01 (solid gray lines), 0.5 (dashed lines), 2 (dash-dotted lines), and
4 K (dotted lines). (Top) Field oriented along a maximal diameter. (Middle) Field oriented normal to a facet. (Bottom) Magnetoconductance
anisotropy. From left to right: the three columns display results for doping densities as indicated.
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respectively, is shown in Fig. 9(b). Note, in particular, that
the magnetoconductance minimum is attained at a slightly
different field for the two directions of the field, due to
the different localization of the electron gas in different
directions. Accordingly, the anisotropy changes sign in this
region. Therefore the change of sign of the anisotropy is a clear
signature of the inhomogeneous localization of the electron gas
in CSNWs.

The dependence of the magnetoconductance on tem-
perature is illustrated in Fig. 10. The steplike profiles of
the lowest, 0.01 K, temperature case (gray lines)32–34 are
rapidly smoothed out by thermal broadening [note that
temperature enters here through the fractional Fermi oc-
cupations in Eq. (6); we use the self-consistent subbands
obtained at T = 4 K for all T and check, in selected
cases, that results are unaffected by this choice]. However,
anisotropy and negative magnetoresistance persist at larger
temperatures.

We now note that the negative magnetoresistance regime
is present (at sufficiently low temperature) both in the high-
and intermediate-density regimes which, as discussed in the
previous section, correspond to remarkably different electron
gas localizations (compare Figs. 5 and 7, top panels). In
both cases, the predicted increase of G after a minimum
originates in the bending of the lowest subbands. In the
intermediate-density regime, two local minima emerge, one
at positive and one at negative values of the in-wire mo-
mentum k (see, e.g, Sec. III B), and arise from the fact
that in a cylindrical geometry the vertical component of
the field, and therefore the magnetic confinement energy,
is minimum on the flanks of the cylinder. Indeed, similar
predictions of negative magnetoresistance at low temper-
ature have been reported for electron gases with tubular
geometry.35,36

However, we observe that the magnitude of the negative
magnetoresistance in a NW in the intermediate-density regime
is of one unit of G at the most, whereas in the high-density
regime, it can be of up to four units (see Fig. 10, top-right
panel). This is due to the wavier dispersion of the subbands
in the high-density regime, which allows more channels at
the Fermi energy. As we have shown in Sec. III C, additional
minima appear in the high-density regime, and arise from
the localization of magnetic states in the wells of the self-
consistent potential, at the corners of the hexagonal core.
Hence the observation of a large negative magnetoresistance
would be another signature of the electron gas localization in
the edges of the NW.

V. CONCLUSIONS

In this work, we simulated a CSNW device through a self-
consistent mean field procedure and determined the following.
First, small variations of the doping density are able to modify
the charge localization pattern from a 1D regime (electrons
in the core) to a cylinder-like wrapped 2DEG (along the
whole heterointerface), to a set of six coupled 1D channels (at
the vertices of the hexagonal section of the heterointerface).
Second, the orthogonal magnetic field does not change much,
at least qualitatively, the above localization patterns, but has a
strong impact on the subband dispersions and on the density of
states. Namely, minima at k �= 0 appear, due to the competition
between the magnetic length and the structure confinement.
High-DOS regions of the self-consistent subband structure
pin to the Fermi level and a strong magnetic field enhances
this effect due to the flattering of the bands at low k. Third,
electron-electron interaction leads to strongly inhomogeneous
localization and is responsible for the stability of the 2DEG
also in presence of strong magnetic fields. Fourth, the full
inclusion of the prismatic cross-section in the numerical
modeling of the CSNW is essential, since a cylindrical model,
not taking into account the real sample symmetry, cannot
reproduce the complex localization patterns and the different
subband tailoring induced by the magnetic field. Fifth, a regime
of negative magnetoresistance is predicted in the case with high
doping density, contrary to the case of planar 2DEGs or purely
1D systems. Furthermore, a substantial anisotropy is expected
in the magnetoconductance, as the magnetic field is applied
along the direction joining two opposite vertices or perpendic-
ular to two opposite facets. The last two effects are clear sig-
natures of the inhomogeneous localization of the electron gas.

Since semiconductor nanowires are at the hearth of FET
devices with a GAA patterning,20 the analysis of carrier
states and conductance is important also for applications. For
example, the effect of gate potential on the I-V characteristics
of cylindrical GAA FET is strongly connected to the shape
and position of the conduction channel. In CSNWs, the latter
can be tailored with an external magnetic field and probed
by magnetoconductance measurements, as we demonstrated.
We also note that current cylindrical models for the core
quantum wire of GAA FETs may become soon inadequate,
as its diameter moves from the micrometric to the nanometric
scale. Finally, a properly engineered CSNW can effectively
move the free carriers of the FET channel closer to the gate
electrode with respect to a bulk nanowire. As a consequence,
the effectiveness of the gate potential should be enhanced.
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