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We use spin-density-functional theory within an envelope function approach to calculate electronic states
in a GaAs/InAs core-shell nanowire pierced by an axial magnetic field. Our fully three-dimensional quantum
modeling includes explicitly a description of the realistic cross section and composition of the sample, and the
electrostatic field induced by external gates in two different device geometries: gate-all-around and back-gate. At
low magnetic fields, we investigate Aharonov-Bohm oscillations and signatures therein of the discrete symmetry
of the electronic system, and we critically analyze recent magnetoconductance observations. At high magnetic

fields, we find that several charge and spin transitions occur. We discuss the origin of these transitions in terms of
different localization and Coulomb regimes, and we predict their signatures in magnetoconductance experiments.
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I. INTRODUCTION

Gated semiconductor nanowire (NW) devices represent
flexible test beds to study transport phenomena in the quasi-
one-dimensional quantum regime. In this context, InAs-based
NWs offer privileged properties derived, for instance, from the
light InAs electron effective mass, which enables the experi-
mental observation of the subband spectrum quantization even
in NWs of a relatively large section, [1-3] or from its large
spin-orbit interaction and Landé factor [4,5]. This boosts their
prospective applications in spintronics [6], even at relatively
high temperature [7]. Furthermore, in this narrow-gap material,
the Fermi energy, Ef, is pinned by surface states above
the conduction-band edge [8], leading to an accumulation of
electrons at the NW surface and facilitating the fabrication of
Ohmic contacts [1,9].

The resulting tubular shape of the conducting channel
points toward interesting quantum phenomena under external
magnetic fields [10]. In particular, an axial field may lead
to Aharonov-Bohm (AB) field-periodic modulation of the
electron energy spectrum [11] and, if the phase-coherent
length exceeds the perimeter of the NW, the observation
of magnetoconductance oscillations [12,13]. Indeed, several
observations of AB-like oscillations in magnetotransport
experiments performed on radial heterostructures have been
reported [14—18]. Recently, Gul et al. [16] observed flux-
periodic magnetoconductance oscillations in GaAs/InAs core-
shell NWs. The oscillations persisted at different density
regimes, modulated by a back-gate, exhibiting phase shifts as
the back-gate voltage was gradually increased. A field-periodic
magnetoconductance has also been observed in the same
system with superconductor contacts [17] and, after removal
of the GaAs core, in a hollow InAs shell [18].

The single-crystal NW-based heterostructures investigated
in these experiments have a prismatic hexagonal cross sec-
tion. However, the experimental observations were analyzed
in terms of simplified cylindrical electronic systems, and
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the potential induced by the back-gate voltage, which also
removes the cylindrical symmetry, was neglected. Likewise,
theoretical calculations dealing with radial electronic systems
with an axial magnetic field usually assume a cylindrical
symmetry [5,12,13,19,20]. Ferrari et al. [10] investigated the
effect of an axial magnetic field in prismatic systems, but
the single-particle model adopted did not allow for a direct
comparison with experiments.

Such approximations are particularly severe in radial het-
erostructures, where coupling between the discrete (hexagonal
in InAs or GaAs) symmetry and many-electron interactions
leads to strongly inhomogeneously distributed electron gas
and, in turn, to the coexistence of one-dimensional (1D)
and 2D channels at the corners and facets of the hexagonal
heterointerfaces [21-23]. Strong anisotropy-induced effects
are predicted in this case, such as negative magnetoresistance
in a transverse magnetic field [24] and symmetry-induced
cancellation of the AB effect in hexagonal quantum rings [25].
The inhomogeneous electron gas localization was crucially
exposed in the recent observation of intra- and interband
excitations [23,26].

In this paper, we study the electronic states and magne-
toconductance in GaAs/InAs core-shell NWs with an axial
magnetic field within a spin-density-functional theory (SDFT)
approach. Our fully 3D modeling explicitly includes the
description of the quantum states within an envelope function
approach with a realistic cross section and composition of
the sample, and it includes the electrostatic field induced by
external gates in two different device geometries, namely
gate-all-around and back-gate. At low magnetic fields, we
investigate the nature of the magnetoconductance oscillations,
as measured in Ref. [16], predicting specific signatures of
the discrete symmetry of the electronic system in the AB
magnetoconductance oscillations, and justifying the observa-
tion of AB oscillations despite the broken symmetry induced
by the back-gate voltage. At high magnetic fields, we found
that several charge and spin transitions occur. We discuss the
origin of these transitions in terms of different magnetic-field-
induced localization and Coulomb regimes, and we predict
their signatures in magnetoconductance experiments.
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II. THEORETICAL MODEL

Within a parabolic single-band envelope-function descrip-
tion, the effective Kohn-Sham Hamiltonian under an external
magnetic field reads

N 1.
H=3 (P—eAm) —) (P — e AR)) + Veont(R)
+VZR) + Vu(R) + Vgc(R). Q)

Here, R = (x,y,2), P is the momentum operator, A(R) is
the vector potential, e is the elementary charge, and m*(R) is
the material-dependent electron effective mass. Vgone(R) is the
spatial confinement potential induced by the heterostructure,
and Vg (R) is the Hartree potential energy. The Zeeman energy
V7 (R) and the exchange-correlation potential Vy~(R) depend
on the the spin index 0 =1, | of the electrons.

We consider an infinitely long NW extending along the z
direction. To describe an axial magnetic field, we adopt the
symmetric gauge A(R) = B/2(—y,x,0) (see Fig. 1 for axis
definition). The axial field does not break the spatial invariance
along the z axis. Therefore, the single-particle eigenfunctions
of (1) can be written as W, 1 ,(R) = e3¢, ,(r), with r =
(x,y), n the principal quantum number, and k the wave number
along direction z. Substituting W, ; ,(R) and A(R) in (1), we
obtain the spin-dependent Kohn-Sham equation
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persion along the z axis, and L, = —i fi(x % - %) is the

FIG. 1. (Color online) Schematics of a core-shell NW in the (a)
gate-all-around and (b) back-gate device configurations.

PHYSICAL REVIEW B 91, 115440 (2015)

azimuthal angular momentum operator. To obtain Eq. (2), it
is necessary to assume that the z component of the effective
mass, mz‘, does not depend on r, i.e., on the material. This
approximation is expected to have a small effect [27] and
enables us to decouple the electron motion in the longitudinal
and transverse directions.

The confinement potential vone(r) is set by the conduction-
band offsets among the different materials that are radially
modulated in the NW cross section. The Zeeman term is

vy(r) = g" (s By, 3)

where g*(r) is the material-dependent Landé factor, pp is the
Bohr magneton, and n, = +1/2(—1/2) foro =1 ({).
The Hartree potential energy, vy(r), is calculated from

the electrostatic potential, vy (r) = —e ®(r), via the Poisson
equation
1
Ve(r)Vo(r) = g—e[n(r) —np(r)]. “4)
0

Here, n(r) = n4(r) + n(r) is the total free-electron charge
density calculated, using the Kohn-Sham eigenstates obtained
from Eq. (2), as

1 o0
no®) = 5 Z Gno (O /_ K ey~ ERT). )

where
1

flenko — Ep,T) = 1+ enco—En/kaT

(6)

is the Fermi occupation, with Er, T, and kg being, respec-
tively, the Fermi energy, temperature, and Boltzmann constant.
In Eq. (4), np(r) is the density of static donors and &(r) is the
material-dependent static dielectric constant.

The exchange and correlation potential, v (r), in the
local-spin-density approximation (LSDA) [28] is given by the
functional derivative
i) = Pou50)

ng(r)

where ex.(n(r),¢(r)) is the exchange and correlation energy
density, and

, (N

ny(r) —ny (r)
n(r)
is the local spin polarization. In the present paper, we use the
correlation functional proposed by Perdew and Wang [29].
From the solutions of the Kohn-Sham equations, we also
obtain the total free energy per unit length from [30]

1 oo
E = E;/;m dk En,k,crfn,k,a
1/dr (r)n(r) Z/dr Mg (r)
- = v n(r) — v Ny
) H - xc

+ /drgxc(n(r),C(r)) + % ;/: a*

X [fakoIn fako + 1 = fuko) In(d = fuko)l (9)

Here, the second term on the right-hand side is the Hartree
energy per unit length with the sign inverted, the fourth term

¢r) = ®)
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is the exchange and correlation energy per unit length, and the
last term is an entropy functional, where f, k.o = f(€n k.0 —
Ep,T).

Equations (2)—(9) are solved iteratively until self-
consistency is reached, which we consider to occur when
two convergence criteria are simultaneously fulfilled in two
consecutive iterations: first, the relative variation of the charge
density is lower than 10~* at any point of the discretization
domain, and second, the relative variation in total free energy
per unit length [Eq. (9)] is lower than 1078.

Equations (2) and (4) are numerically integrated in a
real-space hexagonal domain. We use the same symmetry-
preserving triangular grid with ~1.14 points/nm? for both
formulas, and we integrate Eqs. (2) and (4) with the methods
of finite elements and finite volumes, respectively. Dirichlet
boundary conditions are assumed in both cases, generally
forcing the solutions to vanish at the boundaries. To simulate
the effect of a gate-all-around [see Fig. 1(a)], the electrostatic
potential in the Poisson equation is forced to take the gate
voltage V, at the domain boundaries. For a back-gate, we
assume that the hexagonal domain is sandwiched by two flat
infinite electrodes [see Fig. 1(b)] and the electrostatic potential
is set at the gate voltage V, at the bottom facet and zero at the
top one. Accordingly, at the lateral boundaries the electrostatic
potential is setto F dp(r), with F and dp(r) being, respectively,
the electric field in the capacitor and the vertical distance from
the boundary point to the bottom electrode [see Fig. 1(b)].

Finally, we also calculate the spin-projected free charge
density per unit length,

My = /na(r)dr, (10)

and the spin-projected ballistic conductance of the NW by
means of the linear-response Landauer formula [31],

Zf 3f(E EF,T) JE an

where the integral is performed along each energy spin-
subband B, ,. Note that the integrand makes a significant
contribution only in the energy region close to the crossings
of the subband with the Fermi energy Ef.

III. NUMERICAL RESULTS

We consider a GaAs/InAs core-shell hexagonal NW such
as the one measured in Ref. [16] and outlined in Fig. 1. It is
composed of a GaAs NW core with a minimal diameter of 100
nm and an InAs shell with a thickness of 25 nm. In addition,
we include in the device an external 30-nm-thick layer of SiO,
intended to simulate the insulating layer that separates the
conducting channel from a back-gate in the experiment [16].
The GaAs core is doped with a homogeneous density of
donors np =5 x 10" cm™3 (as in Ref. [16]). The material
parameters used in the calculations are listed in Table I, where
the conduction-band edge, Ecg, is obtained with the so-called
40:60 rule [32,33] from the band gap. Calculations have been
conducted assuming a Fermi energy placed 75 meV above the
InAs conduction-band edge (as in Ref. [16]), a temperature of
1.8 K, and the InAs effective mass as the constant mass factor
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TABLE I. Material parameters used in the simulations; electron
effective mass (m*), dielectric constant (¢), effective Landé factor
(g*), and conduction-band edge (Ecg).

GaAs InAs SiO,
m* 0.067 0.028 0.41
£ 13.18 15.5 3.9
g* —0.484 —14.3 2.0
Ecg (eV) 0.858 0.252 54

(m7) arising in the parabolic dispersion of the 1D subbands
[see Eq. (2)].

A. Low-magnetic-field regime: Magnetoconductance
oscillations

In Fig. 2, we show the ground-state properties and magneto-
conductance of the investigated core-shell NW at V, = 0. The
density distribution of conduction-band electrons [Fig. 2(b)]
shows that charge is exclusively accumulated in the InAs shell
and preferentially localized at the corners of the hexagonal
section. As reported for several core-(multi)shell hexagonal
NWs [21-23,34], such distribution is favored by Coulomb
interactions, which tend to increase the interelectron distance.
In Fig. 2(a), we show the energies of the spin-subband
edges at different magnetic fields, hereafter referred to as
magnetic spin-subbands (MSS), with spin up (1-MSSs) and
spin down ({-MSSs). Due to the hexagonal symmetry of the
self-consistent potential, the low-energy spectrum is at low
fields formed out of groups of 12 MSSs arising from the six
irreducible representations of the C¢ symmetry group. Each of
these groups is further spin-split by the strong Zeeman effect
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FIG. 2. (Color online) (a) Magnetic spin-subbands (MSS) in the
low-field regime. Red and blue dots indicate |- MSSs and 1-MSSs,
respectively. The horizontal black line is set at E . (b) Self-consistent
electron density distribution, n(r), for the InAs/GaAs NW at B = 0.
(c) Spin-projected magnetoconductances G (red) and G4 (blue), and
total magnetoconductance (black).
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forming two bunches, one of 1-MSS and the other of |-MSSs,
of six braided MSSs.

Within each group, the MSSs oscillate due to the AB
effect, developing crossings with MSSs of their same group,
which have different symmetry and/or different spin, and
anticrossings with MSSs of neighboring groups with the same
symmetry and spin. The oscillation period is ~0.32 T. Since
the calculated expectation value of the radial position, p =
v x% + y2, of the electron system is 66.36 nm, this periodicity
corresponds fairly well to the periodicity of ~0.30 T of the
corresponding circular system.

In Fig. 2(c), we show the spin-projected magnetoconduc-
tances G,(B) and the total magnetoconductance G(B) =
G4+(B)+ G (B). Even though both G,(B) exhibit regular
flux-periodic oscillations, G(B) only does so at very low fields.
After the second oscillation cycle, the G(B) periodicity is
suppressed by the Zeeman effect, which breaks the periodicity
of the MSS spectrum [12,13]. Apart from this, G(B) does
not differ qualitatively from that of an electron system in a
cylindrical tube [12,13,16]. Indeed, in the present case, Ef lies
within one group of braided MSSs, and the spectrum around
Ep is similar to that of a cylindrical system. However, in
an experiment Er can be tuned by means of external gates.
Therefore, we next study the system at different Fermi levels
Er or applied gate voltages V.

In Fig. 3, we show the effect of a gate-all-around voltage.
This geometry tunes the position of the MSSs with respect to
E r,modulating the total density in the system while preserving
the hexagonal symmetry. As shown in Fig. 3(a), the oscillatory
behavior of the magnetoconductance due to the AB effect is
absent at certain voltages. For instance, at V;, = 80 mV the
magnetoconductance is flat. This is due to the positioning of
Er in the energy gap between the second and third group of
MSSs, as shown in Fig. 3(c). Since E ¢ does not cross any MSS,
the number of conducting channels is constant. Comparing
Figs. 3(b) and 3(c), which correspond to V, = —60 and 80 mV,
respectively, we also observe that the gate voltage affects both
the width of the MSSs groups and the gaps between them. In
fact, V, affects the total electron density and, hence, electron
localization. As shown in the insets of Figs. 3(b) and 3(c), a
V, > 0 favors localization in the corners of the InAs shell,
due to the larger electron-electron interaction. This, in turn,
reduces the tunneling among states at the corners and, hence,
the splittings within bunches of MSSs, while it increases the
gaps between consecutive bunches [10]. Note that, since the
latter gaps are a direct consequence of the discrete symmetry
of the system, flat magnetoconductance is a direct signature of
the hexagonal symmetry, which is more likely to be observed
at positive gate voltages.

Observation of flat magnetoconductance when sweeping
V, has not been reported in the transport measurements
performed hitherto on hexagonal NWs under axial magnetic
fields [9,16—18]. However, in these works the electron density
was normally modulated by a back-gate instead of a gate-
all-around. The electrostatic field generated by a back-gate
removes the hexagonal symmetry of the electronic system,
and it could even destroy the doubly connected topology
that originates the AB effect. Therefore, one may wonder
why flux-periodic oscillations in the magnetoconductance are
observed at all.
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FIG. 3. (Color online) (a) Total magnetoconductance at selected
gate-all-around voltages, V,, as indicated by labels [the V, = 0 curve
is the same as the black line in Fig. 2(c)]. (b) MSSs at V, = —60 mV.
(c)MSSs at V, = 80mV. Insets in (b) and (c) show the corresponding
n(r).

To assess this point, in Fig. 4 we show the results of
simulations performed at different back-gate voltages. As
shown in the insets of Figs. 4(b) and 4(c), the applied voltage
strongly reshapes the electron density distribution in the NW.
At negative (positive) V, the total density in the system is
reduced (increased) and concentrated in the top (bottom) half
of the InAs shell. However, whereas the doubly connected
topology that results in AB oscillations is removed at suffi-
ciently negative voltages (e.g., V, = —80 mV), it is robust
for V, > 0. The origin of this difference can be appreciated
from the corresponding MSSs [Figs. 4(b) and 4(c)]. The
lowest-lying MSSs are strongly affected by the gate, losing
the doubly connected topology and showing an almost linear
dispersion with the magnetic field. Higher-energy MSSs, on
the contrary, being more delocalized over the NW section,
still show doubly connected topology. Since at V, = —80
and —100 mV only low-lying MSSs are occupied [see
Fig. 4(b)], the total electron density loses the doubly connected
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FIG. 4. (Color online) (a) Same as in Fig. 3 but for a back-gate
device. (b) MSSs at V, = —80 mV, (c) MSSs at V, = 200 mV.

topology, and the corresponding magnetoconductance does
not show AB oscillations. In contrast, at V, > 0 several states
with doubly connected topology are occupied, and the AB
oscillations of the magnetoconductance persist [see Fig. 4(a)].
The latter is indeed the usual regime in magnetotransport
experiments [16,17] where, therefore, periodic oscillations in
the magnetoconductance are observed despite the symmetry
reduction.

B. High-magnetic-field regime: Spin and charge transitions

We next study the high-magnetic-field regime, up to
the limit of complete electron depletion, which occurs at
B ~ 20 T in this sample. Figure 5 shows the MSSs and the
self-consistent total electron density distributions at selected
fields (spin-projected electron densities show only minor
differences and are not shown here). All simulations in this
section are performed at V, = 0. The overall behavior of
MSSs shows that, in addition to the diamagnetic shift, several
transitions occur at discrete fields, as we discuss below.

The evolution of n(r) in Figs. 5(b)-5(f) shows that the axial
field induces a transition from an electron distribution localized

PHYSICAL REVIEW B 91, 115440 (2015)
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FIG. 5. (Color online) (a) MSSs up to complete charge depletion.
Blue (red) dots are used for 1-MSSs (| -MSSs). The horizontal line
indicates the position of E . Vertical dashed arrows indicate fields at
which different spin/charge transitions occur (see text). (b)—(f) Self-
consistent electron density distributions n(r) at selected magnetic
fields.

at the corners [low field, Figs. 5(a) and 5(b)] to a distribution
increasingly localized in the center of the facets [high field,
Figs. 5(e) and 5(f)]. This charge reshaping is induced by the
diamagnetic term [third term on the left-hand side of Eq. (2)],
which constrains the electron density to adopt distributions
with lower radius as the field is increased, counteracted by
Coulomb interactions.

Such a corner-to-facet transition can be correlated with the
evolution of the MSSs. In Fig. 5(a), the lowest-lying bunch
of 12 MSSs at B = 0 corresponds to states localized at the
corners, whereas the second set of states are localized at the
facets for orthogonality. As the field is increased, Zeeman spin-
splitting takes place and the two sets of six |-MSSs approach
in energy, eventually overlapping at Bc_, p~ 10.2T. At this
point, the 2D electron density integrated along the minimal
(facet-to-facet) and maximal (corner-to-corner) diameter [22]
is nearly the same [see Fig. 5(d)]. At B > B¢ r, the six lowest
J-MSSs are localized at the facets of the inner interface, while
corner states are much higher in energy, corresponding to the
third group of six |-MSS. The same transition occurs for
1-MSS, however these states are already depopulated at the
transition field.

Apart from this smooth spatial localization transition, two
abrupt changes of slope appear in the calculated MSSs. The
first one occurs at Bp = 7.5 T and corresponds to complete
spin polarization, as demonstrated by the spin-projected elec-
tron densities 714,71, shown in Fig. 6(a) and the corresponding
spin polarization in Fig. 6(b), which marks a clear transition
to a ferromagnetic state at Bp. Note that the total density
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FIG. 6. (Color online) (a) Total density 7 (black lines) and spin-
projected densities 714 (blue lines) and 71, (red lines) as a function
of the field intensity B. Vertical dashed lines illustrate the transition
fields in Fig. 5(a). (b) Spin polarization as a function of the magnetic
field. Inset: spin susceptibility.

[black line in Fig. 6(a)] is reduced by the magnetic field with
a roughly parabolic trend due to the depletion of successive,
high-energy MSSs. However, the curve shows a change of
slope at (Bp). At fields right after Bp, the rate at which the
NW is depleted decreases momentarily. i, passes abruptly
from being increased to decreased at Bp, in agreement with
the inversion of the |-MMSs slope exposed in Fig. 5(a).

The singular behavior of the spin polarization [Fig. 6(b)] is
reminiscent of the first-order phase transition of a 2D electron
gas with an in-plane magnetic field [35,36] (note that in our
system, the Seitz radius r; ~ 0.07 at zero field, which is a
very weakly correlated regime), although it is difficult in our
numerical treatment to establish whether it is a weakly first-
order or continuous transition. The inset in Fig. 6(b) shows
the spin susceptibility, i.e., the magnetic-field derivative of the
spin polarization. This magnitude oscillates with the field as
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FIG. 7. (a) Total free energy per electron and (b) Hartree (solid),
exchange (dashed), and correlation (dotted) energies per electron as
a function of the field B. Vertical dashed lines indicate the transition
fields in Fig. 5.

a consequence of the interplay between the AB effect and the
Zeeman splitting, which produce short-period modulations of
the spin densities.

At fields higher than Bp and B¢ g, the MSSs shown
in Fig. 5(a) rearrange in groups of six, which tend to form
Landau-like bands. Finally, at a larger field B, = 16 T the
spectrum shows an additional transition. This corresponds to
complete depletion of the incipient second Landau-like band.
The transition is also marked by a weak but visible kink in
ii(B), as shown in Fig. 6(a), which, as for the ferromagnetic
transition, indicates a sudden decrease in the depletion rate.

The free energy per electron and the many-electron energy
contributions per electron are calculated dividing the corre-
sponding magnitudes per unit length by the total electron
density and plotted in Figs. 7(a) and 7(b), respectively. All
energy contributions show weak kinks at Bp and Bj. The
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FIG. 8. (Color online) Noninteracting MSS edges with respect to
the InAs conduction-band edge. Blue (red) dots are used for $-MSSs
({-MSSs).

free energy per electron increases with B due to the increase
in magnetic confinement. However, the Hartree energy per
electron [Fig. 7(b)] is reduced with B due to field-induced
charge depopulation. At high magnetic fields, B > 18.5 T, the
Hartree energy changes sign because the free-electron density
is lower than the total density of static donors included in the
simulation in the NW GaAs core. Note from Fig. 7(b) that the
direct Hartree energy is one and two orders of magnitude larger
than the exchange and correlation contributions, respectively,
and therefore it will rule many-electron effects in the system.

To assess the role of many-electron contributions, in Fig. 8
we show the MSSs calculated in a noninteracting model, i.e.,
vy = 0 and vxc = 0. The MSSs follow in this case a smooth
evolution with B, which evidences the many-electron origin
of the two transitions at Bp and B; in the SDFT calculation.
We have also checked that such transitions persist when only
vxc = 0 (data not shown here), as was expected from the
weak effect of the exchange and correlation contributions in
the present system [see Fig. 7(b)].

Indeed, the transitions at Bp and B;, result from the balance
between the two main energy contributions: the magnetic
confinement, which increases the system energy with B, and
the direct Coulomb or Hartree energy, which is reduced with
B due to the charge depletion decreasing the system energy in
this way. Thus, the first transition at Bp, which produces an
inversion in the slope of the |-MSSs, can be understood as a
transition between a regime, B < Bp, in which the reduction
in Hartree energy dominates over the magnetic confinement, to
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FIG. 9. (Color online) (a) Total magnetoconductance G = G +
G, (black) and spin-resolved magnetoconductances, G (blue) and
G, (red). (b) Total magnetoresistance. Vertical dashed lines indicate
the transition fields in Fig. 5.

another regime, B > Bp, in which the magnetic confinement
dominates. The key difference before and after Bp is the
magnitude of the Hartree energy that is lost per depleted
state, which is larger at B < Bp. This is because when the
system is not spin-polarized, the Hartree energy also arises
from the interactions between electrons with antiparallel spin.
The latter, which are absent in the ferromagnetic phase, are
stronger than interactions between parallel spin electrons due
to the lack of a Fermi hole.

The transition at By, which produces an abrupt increase
of the MSSs, is also interpreted with similar arguments, i.e.,
the Hartree energy lost per depleted state is lower at B > By .
This is due to the larger localization of the electron density at
B > B [cf. Figs. 5(e) and 5(f)], which entails a larger Fermi
hole in the direct Coulomb interaction in this regime. Indeed,
it has been proven that the conditional probability of finding
an electron with a given spin when there is already another
electron with the same spin nearby is lower when the former
is localized [37].

The spin-projected magnetoconductances G4,G and the
total magnetoconductance G = G; + G calculated from
the SDFT modeling are shown in Fig. 9(a). Starting from
low fields, the total magnetoconductance oscillates, due to
oscillating MSSs crossing E, around an average value of 16
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%/ h up to a magnetic field B ~ 6 T. As the field approaches
Bp, a sudden steplike reduction of four magnetoconductance
units is caused by the sudden depletion of the lowest set of 1-
MSSs [see Fig. 5(a)] induced by the ferromagnetic transition.

At B > Bp, the magnetoconductance shows an almost
flat plateau that lasts up to B ~ 12 T. This originates in
the location of Ef in the symmetry-induced energy gap
between the second and third group of six |-MSSs [see
Fig. 5(a)]. As Er merges in the second group of |-MSSs, the
magnetoconductance starts to oscillate again, while reducing
in average at an increasing rate approaching B;.. At B > B,
Er lies in the wide energy gap between the first and second
Landau bands, hence G is constant.

Finally, G(B) drops to zero when the first incipient Landau
band crosses Er and the conduction band gets completely de-
pleted. In Fig. 9(b), we also plot the magnetoresistance 1/ G(B)
to illustrate the kink observed at Bp, which corresponds to that
observed in experimental measures [38,39] of ferromagnetic
transitions in flat quasi-2D electron systems under in-plane
magnetic fields.

IV. SUMMARY AND CONCLUSIONS

We performed a SDFT study of the electronic structure and
magnetoconductance of hexagonal core-shell NWs pierced by
an axial magnetic field. Critically, our modeling goes beyond
often employed cylindrical and/or single-particle approxima-
tions to simulate radial heterostructures, which neglect the
strongly inhomogeneous, field-dependent distribution of the
electron gas.

In the low-field regime (B < 2 T), we predict that AB
magnetoconductance oscillations may disappear/resurface as
a function of the gate-all-around voltage as a direct conse-
quence of the presence of discrete symmetry-induced energy
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gaps. Our calculations also allowed us to critically analyze
recent experiments [16,17] and justify the observation of AB
oscillations in spite of the broken symmetry induced by the
back-gate voltage.

In the high-magnetic-field regime, we found several field-
induced transitions. First, the diamagnetic confinement in-
duces a strong reshaping of the electron gas, which goes
through a smooth transition from a low-field electron density
distribution concentrated in the corners to a high-field distribu-
tion strongly localized in the facets of the radial heterojunction.
Several experimental consequences of such reshaping are
expected, for example in optical recombination experiments,
due to the different localization of electrons and holes [26].

In addition, two abrupt transitions occur at discrete fields
that are related to the depletion of higher MSSs. These
depletions are either of the lowest antiparallel spin MSSs,
leading to spin polarization, or of the second incipient
Landau-like band with parallel spin. The origin of these
transitions lies in the increase of the effective Fermi hole
occurring at each transition, which affects the amount of
Hartree energy that is lost per depleted state. As a consequence,
such abrupt transitions are clearly marked in the calculated
magnetoconductance by steplike behaviors.

ACKNOWLEDGMENTS

We acknowledge partial financial support from Universitat
Jaume I, Projects No. P1-1B2011-01 and P1.1B2014-24,
MINECO Project No. CTQ2011-27324, APOSTD/2013/052
Generalitat Valenciana Vali+d Grant (M.R.), and a MINECO
FPU Grant (C.S.), from EU-FP7 Initial Training Network
INDEX, and from Universitd di Modena e Reggio Emilia,
through the Grant “Nano- and emerging materials and systems
for sustainable technologies.”

[1] S. Chuang, Q. Gao, R. Kapadia, A. C. Ford, J. Guo, and A.
Javey, Nano Lett. 13, 555 (2013).

[2] F. Vigneau, V. Prudkovkiy, I. Duchemin, W. Escoffier, P. Caroff,
Y.-M. Niquet, R. Leturcq, M. Goiran, and B. Raquet, Phys. Rev.
Lett. 112, 076801 (2014).

[3] E. Halpern, A. Henning, H. Shtrikman, R. Rurali, X. Cartoixa,
and Y. Rosenwaks, Nano Lett. 15, 481 (2015).

[4] D. Liang and X. P. Gao, Nano Lett. 12, 3263 (2012).

[5] A. Bringer and T. Schapers, Phys. Rev. B 83, 115305 (2011).

[6] S. Nadj-Perge, S. Frolov, E. Bakkers, and L. P. Kouwenhoven,
Nature (London) 468, 1084 (2010).

[71 E. Rossella, A. Bertoni, D. Ercolani, M. Rontani, L.
Sorba, F. Beltram, and S. Roddaro, Nat. Nanotech. 9, 997
(2014).

[8] H. Liith, Solid Surfaces, Interfaces and Thin Films, 6 ed.
(Springer-Verlag, Berlin, Heidelberg, 2015).

[9] C.Blomers, M. I. Lepsa, M. Luysberg, D. Grutzmacher, H. Luth,
and T. Schapers, Nano Lett. 11, 3550 (2011).

[10] G. Ferrari, G. Goldoni, A. Bertoni, G. Cuoghi, and E. Molinari,
Nano Lett. 9, 1631 (2009).

[11] J. Planelles, W. Jaskoélski, and J. 1. Aliaga, Phys. Rev. B 65,
033306 (2001).

[12] Y. Tserkovnyak and B. I. Halperin, Phys. Rev. B 74, 245327
(2006).

[13] T. O. Rosdahl, A. Manolescu, and V. Gudmundsson, Phys. Rev.
B 90, 035421 (2014).

[14] M. Jung, J. S. Lee, W. Song, Y. H. Kim, S. D. Lee, N. Kim, J.
Park, M.-S. Choi, S. Katsumoto, H. Lee, and J. Kim, Nano Lett.
8, 3189 (2008).

[15] T. Richter, C. Blomers, H. Liith, R. Calarco, M. Indlekofer, M.
Marso, and T. Schapers, Nano Lett. 8, 2834 (2008).

[16] O. Giil, N. Demarina, C. Blomers, T. Rieger, H. Liith, M. 1.
Lepsa, D. Griitzmacher, and T. Schapers, Phys. Rev. B 89,
045417 (2014).

[17] O. Giil, H. Y. Giinel, H. Liith, T. Rieger, T. Wenz, F. Haas, M.
Lepsa, G. Panaitov, D. Griitzmacher, and T. Schapers, Nano
Lett. 14, 6269 (2014).

[18] T. Wenz, M. Rosien, F. Haas, T. Rieger, N. Demarina, M. L.
Lepsa, H. Liith, D. Griitzmacher, and T. Schapers, Appl. Phys.
Lett. 105, 113111 (2014).

[19] V. N. Gladilin, J. Tempere, J. T. Devreese, and P. M. Koenraad,
Phys. Rev. B 87, 165424 (2013).

[20] T. O. Rosdahl, A. Manolescu, and V. Gudmundsson, Nano Lett.
15, 254 (2015).

115440-8


http://dx.doi.org/10.1021/nl3040674
http://dx.doi.org/10.1021/nl3040674
http://dx.doi.org/10.1021/nl3040674
http://dx.doi.org/10.1021/nl3040674
http://dx.doi.org/10.1103/PhysRevLett.112.076801
http://dx.doi.org/10.1103/PhysRevLett.112.076801
http://dx.doi.org/10.1103/PhysRevLett.112.076801
http://dx.doi.org/10.1103/PhysRevLett.112.076801
http://dx.doi.org/10.1021/nl503809c
http://dx.doi.org/10.1021/nl503809c
http://dx.doi.org/10.1021/nl503809c
http://dx.doi.org/10.1021/nl503809c
http://dx.doi.org/10.1021/nl301325h
http://dx.doi.org/10.1021/nl301325h
http://dx.doi.org/10.1021/nl301325h
http://dx.doi.org/10.1021/nl301325h
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1038/nnano.2014.251
http://dx.doi.org/10.1038/nnano.2014.251
http://dx.doi.org/10.1038/nnano.2014.251
http://dx.doi.org/10.1038/nnano.2014.251
http://dx.doi.org/10.1021/nl201102a
http://dx.doi.org/10.1021/nl201102a
http://dx.doi.org/10.1021/nl201102a
http://dx.doi.org/10.1021/nl201102a
http://dx.doi.org/10.1021/nl803942p
http://dx.doi.org/10.1021/nl803942p
http://dx.doi.org/10.1021/nl803942p
http://dx.doi.org/10.1021/nl803942p
http://dx.doi.org/10.1103/PhysRevB.65.033306
http://dx.doi.org/10.1103/PhysRevB.65.033306
http://dx.doi.org/10.1103/PhysRevB.65.033306
http://dx.doi.org/10.1103/PhysRevB.65.033306
http://dx.doi.org/10.1103/PhysRevB.74.245327
http://dx.doi.org/10.1103/PhysRevB.74.245327
http://dx.doi.org/10.1103/PhysRevB.74.245327
http://dx.doi.org/10.1103/PhysRevB.74.245327
http://dx.doi.org/10.1103/PhysRevB.90.035421
http://dx.doi.org/10.1103/PhysRevB.90.035421
http://dx.doi.org/10.1103/PhysRevB.90.035421
http://dx.doi.org/10.1103/PhysRevB.90.035421
http://dx.doi.org/10.1021/nl801506w
http://dx.doi.org/10.1021/nl801506w
http://dx.doi.org/10.1021/nl801506w
http://dx.doi.org/10.1021/nl801506w
http://dx.doi.org/10.1021/nl8014389
http://dx.doi.org/10.1021/nl8014389
http://dx.doi.org/10.1021/nl8014389
http://dx.doi.org/10.1021/nl8014389
http://dx.doi.org/10.1103/PhysRevB.89.045417
http://dx.doi.org/10.1103/PhysRevB.89.045417
http://dx.doi.org/10.1103/PhysRevB.89.045417
http://dx.doi.org/10.1103/PhysRevB.89.045417
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1063/1.4896286
http://dx.doi.org/10.1063/1.4896286
http://dx.doi.org/10.1063/1.4896286
http://dx.doi.org/10.1063/1.4896286
http://dx.doi.org/10.1103/PhysRevB.87.165424
http://dx.doi.org/10.1103/PhysRevB.87.165424
http://dx.doi.org/10.1103/PhysRevB.87.165424
http://dx.doi.org/10.1103/PhysRevB.87.165424
http://dx.doi.org/10.1021/nl503499w
http://dx.doi.org/10.1021/nl503499w
http://dx.doi.org/10.1021/nl503499w
http://dx.doi.org/10.1021/nl503499w

AHARONOV-BOHM OSCILLATIONS AND ELECTRON GAS ...

[21] B. M. Wong, F. Léonard, Q. Li, and G. T. Wang, Nano Lett. 11,
3074 (2011).

[22] A. Bertoni, M. Royo, F. Mahawish, and G. Goldoni, Phys. Rev.
B 84, 205323 (2011).

[23] S.Funk, M. Royo, I. Zardo, D. Rudolph, S. Morkotter, B. Mayer,
J. Becker, A. Bechtold, S. Matich, M. Doblinger, M. Bichler,
G. Koblmiiller, J. J. Finley, A. Bertoni, G. Goldoni, and G.
Abstreiter, Nano Lett. 13, 6189 (2013).

[24] M. Royo, A. Bertoni, and G. Goldoni, Phys. Rev. B 87, 115316
(2013).

[25] A. Ballester, C. Segarra, A. Bertoni, and J. Planelles, Europhys.
Lett. 104, 67004 (2013).

[26] J. Jadczak, P. Plochocka, A. Mitioglu, 1. Breslavetz, M. Royo,
A. Bertoni, G. Goldoni, T. Smolenski, P. Kossacki, A. Kre-
tinin, H. Shtrikman, and D. K. Maude, Nano Lett. 14, 2807
(2014).

[27] T. Ando, J. Phys. Soc. Jpn. 51, 3893 (1982).

[28] The validity of the LSDA for the B values of interest was
assessed in Ref. [40] by comparing the obtained results for a
single QD with those given by current-spin-density-functional
theory [41], which is better suited to study many-electron
systems in magnetic fields.

[29] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[30] K. Hirose, S.-S.Li, and N. S. Wingreen, Phys. Rev. B 63,033315
(2001).

PHYSICAL REVIEW B 91, 115440 (2015)

[31] This formula assumes a fully ballistic regime, which is not
exactly the experimentally attainable regime (although quasi-
ballistic transmissions as large as 0.8 have been experimentally
observed, even at room temperature, in InAs NW FETs [1]). We
employ this simplified formula since it can surely yield a correct
qualitative description of the magnetoconductance.

[32] S. Adachi (ed.), Properties of Aluminum Gallium Arsenide,
EMIS Datareviews Series No. 7 (INSPEC; The Institution of
Electrical Engineers, London, 1993).

[33] N. Debbar, D. Biswas, and P. Bhattacharya, Phys. Rev. B 40,
1058 (1989).

[34] G. Martinez-Criado, A. Homs, B. Alén, J. A. Sans, J. Segura-
Ruiz, A. Molina-Sanchez, J. Susini, J. Yoo, and G.-C. Yi, Nano
Lett. 12, 5829 (2012).

[35] A. L. Subasi and B. Tanatar, Phys. Rev. B 78, 155304 (2008).

[36] Y.Zhang and S. Das Sarma, Phys. Rev. Lett. 96, 196602 (2006).

[37] E. Matito, B. Silvi, M. Duran, and M. Sola, J. Chem. Phys. 125,
024301 (2006).

[38] B. A.Piot, D. K. Maude, U. Gennser, A. Cavanna, and D. Mailly,
Phys. Rev. B 80, 115337 (2009).

[39] E. Tutuc, S. Melinte, E. P. De Poortere, M. Shayegan, and R.
Winkler, Phys. Rev. B 67, 241309 (2003).

[40] F. Ancilotto, D. G. Austing, M. Barranco, R. Mayol, K. Muraki,
M. Pi, S. Sasaki, and S. Tarucha, Phys. Rev. B 67,205311 (2003).

[41] M. Ferconi and G. Vignale, Phys. Rev. B 50, 14722 (1994).

115440-9


http://dx.doi.org/10.1021/nl200981x
http://dx.doi.org/10.1021/nl200981x
http://dx.doi.org/10.1021/nl200981x
http://dx.doi.org/10.1021/nl200981x
http://dx.doi.org/10.1103/PhysRevB.84.205323
http://dx.doi.org/10.1103/PhysRevB.84.205323
http://dx.doi.org/10.1103/PhysRevB.84.205323
http://dx.doi.org/10.1103/PhysRevB.84.205323
http://dx.doi.org/10.1021/nl403561w
http://dx.doi.org/10.1021/nl403561w
http://dx.doi.org/10.1021/nl403561w
http://dx.doi.org/10.1021/nl403561w
http://dx.doi.org/10.1103/PhysRevB.87.115316
http://dx.doi.org/10.1103/PhysRevB.87.115316
http://dx.doi.org/10.1103/PhysRevB.87.115316
http://dx.doi.org/10.1103/PhysRevB.87.115316
http://dx.doi.org/10.1209/0295-5075/104/67004
http://dx.doi.org/10.1209/0295-5075/104/67004
http://dx.doi.org/10.1209/0295-5075/104/67004
http://dx.doi.org/10.1209/0295-5075/104/67004
http://dx.doi.org/10.1021/nl500818k
http://dx.doi.org/10.1021/nl500818k
http://dx.doi.org/10.1021/nl500818k
http://dx.doi.org/10.1021/nl500818k
http://dx.doi.org/10.1143/JPSJ.51.3893
http://dx.doi.org/10.1143/JPSJ.51.3893
http://dx.doi.org/10.1143/JPSJ.51.3893
http://dx.doi.org/10.1143/JPSJ.51.3893
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.63.033315
http://dx.doi.org/10.1103/PhysRevB.63.033315
http://dx.doi.org/10.1103/PhysRevB.63.033315
http://dx.doi.org/10.1103/PhysRevB.63.033315
http://dx.doi.org/10.1103/PhysRevB.40.1058
http://dx.doi.org/10.1103/PhysRevB.40.1058
http://dx.doi.org/10.1103/PhysRevB.40.1058
http://dx.doi.org/10.1103/PhysRevB.40.1058
http://dx.doi.org/10.1021/nl303178u
http://dx.doi.org/10.1021/nl303178u
http://dx.doi.org/10.1021/nl303178u
http://dx.doi.org/10.1021/nl303178u
http://dx.doi.org/10.1103/PhysRevB.78.155304
http://dx.doi.org/10.1103/PhysRevB.78.155304
http://dx.doi.org/10.1103/PhysRevB.78.155304
http://dx.doi.org/10.1103/PhysRevB.78.155304
http://dx.doi.org/10.1103/PhysRevLett.96.196602
http://dx.doi.org/10.1103/PhysRevLett.96.196602
http://dx.doi.org/10.1103/PhysRevLett.96.196602
http://dx.doi.org/10.1103/PhysRevLett.96.196602
http://dx.doi.org/10.1063/1.2210473
http://dx.doi.org/10.1063/1.2210473
http://dx.doi.org/10.1063/1.2210473
http://dx.doi.org/10.1063/1.2210473
http://dx.doi.org/10.1103/PhysRevB.80.115337
http://dx.doi.org/10.1103/PhysRevB.80.115337
http://dx.doi.org/10.1103/PhysRevB.80.115337
http://dx.doi.org/10.1103/PhysRevB.80.115337
http://dx.doi.org/10.1103/PhysRevB.67.241309
http://dx.doi.org/10.1103/PhysRevB.67.241309
http://dx.doi.org/10.1103/PhysRevB.67.241309
http://dx.doi.org/10.1103/PhysRevB.67.241309
http://dx.doi.org/10.1103/PhysRevB.67.205311
http://dx.doi.org/10.1103/PhysRevB.67.205311
http://dx.doi.org/10.1103/PhysRevB.67.205311
http://dx.doi.org/10.1103/PhysRevB.67.205311
http://dx.doi.org/10.1103/PhysRevB.50.14722
http://dx.doi.org/10.1103/PhysRevB.50.14722
http://dx.doi.org/10.1103/PhysRevB.50.14722
http://dx.doi.org/10.1103/PhysRevB.50.14722



