6,498 research outputs found

    Visible and ultraviolet reflectance and luminescence from various Saudi Arabian and Indiana limestone rocks

    Get PDF
    Visible and ultraviolet reflectance and luminescence for natural limeston

    Buneman instability in a magnetized current-carrying plasma with velocity shear

    Full text link
    Buneman instability is often driven in magnetic reconnection. Understanding how velocity shear in the beams driving the Buneman instability affects the growth and saturation of waves is relevant to turbulence, heating, and diffusion in magnetic reconnection. Using a Mathieu-equation analysis for weak cosine velocity shear together with Vlasov simulations, the effects of shear on the kinetic Buneman instability are studied in a plasma consisting of strongly magnetized electrons and cold unmagnetized ions. In the linearly unstable phase, shear enhances the coupling between oblique waves and the sheared electron beam, resulting in a wider range of unstable eigenmodes with common lower growth rates. The wave couplings generate new features of the electric fields in space, which can persist into the nonlinear phase when electron holes form. Lower hybrid instabilities simultaneously occur at k/kme/mik_{\shortparallel}/k_{\perp} \sim \sqrt{m_e/m_i} with a much lower growth rate, and are not affected by the velocity shear.Comment: Accepted by Physics of Plasm

    Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom. Application to 1H NMR reversion experiments in nematic liquid crystals

    Get PDF
    An experimental study of NMR spin decoherence in nematic liquid crystals (LC) is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the Irreversible Quantum Decoherence (IQD) in LC, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the IQD of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic IQD. In order to contrast experiment and theory, the theory was adapted to obtain the IQD function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting are analysed in detail within this framework and their effects on the observed signal decay are numerically estimated. It is found that, though these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behavior of the IQD. As unique characteristic of the IQD, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of IQD associated with a quantum open spin system in LC. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibriu

    Quantum motion of a neutron in a wave-guide in the gravitational field

    Full text link
    We study theoretically the quantum motion of a neutron in a horizontal wave-guide in the gravitational field of the Earth. The wave-guide in question is equipped with a mirror below and a rough absorber above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with sufficiently high transversal energy but transmits low-energy states. The states transmitted are mainly determined by the potential well formed by the gravitational field of the Earth and the mirror. The formalism developed for quantum motion in an absorbing wave-guide is applied to the description of the recent experiment on the observation of the quantum states of neutrons in the Earth's gravitational field

    Freezing of the quantum Hall liquid at ν=\nu = 1/7 and 1/9

    Full text link
    We compare the free energy computed from the ground state energy and low-lying excitations of the 2-D Wigner solid and the fractional quantum Hall liquid, at magnetic filling factors ν=1/7\nu = 1/7 and 1/9. We find that the Wigner solid melts into the fractional quantum Hall liquid at roughly the same temperature as that of some recent luminescence experiments, while it remains a solid at the lower temperatures characteristic of the transport experiments. We propose this melting as a consistent interpretation of both sets of experiments.Comment: uses RevTeX 2.0 or 3.

    The Surface of a Bose-Einstein Condensed Atomic Cloud

    Full text link
    We investigate the structure and collective modes of a planar surface of a trapped Bose-Einstein condensed gas at zero temperature. In the long-wavelength limit we find a mode similar to the gravity wave on the surface of a fluid with the frequency ω\omega and the wavenumber qq related by ω2=Fq/m\omega^2=Fq/m. Here FF is the force due to the confining potential at the surface and mm is the particle mass. At shorter wavelengths we use a variational approach and find corrections to ω2\omega^2 of order q4lnqq^4 \ln{q}. We demonstrate the usefulness of the concept of an effective surface tension for describing both static and dynamic properties of condensed atomic clouds.Comment: 8 pages, REVTEX, submitted to Phys. Rev.
    corecore