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An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoher-
ence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions.
The experimental technique used in this work is based on the MREV8 pulse sequence. The aim
of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals,
on the basis of the theory presented by the authors recently. The focus is laid on experimentally
probing the eigen-selection process in the intermediate time scale, between quantum interference of
a closed system and thermalization, as a signature of the quantum spin decoherence of the open quan-
tum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays
which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory
was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments.
Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments,
and the presence of non-reverted spin interaction terms are analysed in detail within this framework,
and their effects on the observed signal decay are numerically estimated. It is found that though all
these non-idealities could in principle affect the evolution of the spin dynamics, their influence can
be mitigated and they do not present the characteristic behaviour of the irreversible spin decoher-
ence. As unique characteristic of decoherence, the experimental results clearly show the occurrence
of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predic-
tions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with
a quantum open spin system in liquid crystals. Besides, these features of the results account for the
quasi-equilibrium states of the spin system, which were observed previously in these mesophases,
and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its
evolution towards equilibrium. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824124]

I. INTRODUCTION

Derivation of a thermodynamic-like stationary state, of
equilibrium or quasi-equilibrium, from a microscopic quan-
tum mechanical starting point, is a major problem faced to-
day by the physics of irreversible processes in nonequilibrium
systems, with impact in a variety of fields, from fundamental
research to applications in areas of high current interest like
quantum computing and quantum information theory.1–10

Particularly, the occurrence of quasi-equilibrium spin
states in nematic liquid crystals (LC’s) poses the problem of
the irreversible evolution of a finite open quantum system
of interacting particles, coupled with a large quantum envi-
ronment, towards a quasi-stationary state.11 In LC’s, due to
the rapid molecular motions that average the intermolecular
spin interactions to zero, the effective spin system comprises
a small number of magnetic degrees of freedom, namely, the
intramolecular dipolar interactions, which remain because of
the typical orientational order of these mesophases.12 How-
ever, the proton Nuclear Magnetic Resonance (NMR) re-
sponse in LC’s is consistent with a true quasi-equilibrium in
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spite of the small number of the degrees of freedom of the ob-
served system.13 This topic has attracted the interest of many
researchers in the NMR field14–19 as well as other areas of
physics.20

In our recent publication on NMR quantum decoherence
in LC’s, which we shall refer to as QD-I,11 a theory was
presented which describes the irreversible quantum decoher-
ence processes undergone by an observed and controlled sys-
tem of quantum interacting particles because of its coupling
with an unobserved lattice or environment. It provided a com-
prehensive explanation, compatible with previous experimen-
tal evidence,13, 21 on the mechanisms which turn the proton
spin system density matrix of nematic LC’s into a quasi-
equilibrium form after an arbitrary initial coherent state.

Accordingly, the decoherence process transforms the ini-
tial state into a block diagonal matrix in the eigenbasis of
the spin-environment interaction Hamiltonian. This evolution
occurs over a time scale intermediate between that of the
Liouvillian evolution of an isolated observed system and the
long time scale where evolution is governed by relaxation and
thermalization processes driven by thermal fluctuations.

The fingerprint of quantum decoherence theory is the
eigen-selection process, which causes a selective decay of the

0021-9606/2013/139(15)/154901/22/$30.00 © 2013 AIP Publishing LLC139, 154901-1
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off-diagonal components of the density matrix, preserving the
block diagonal part of the initial state. Such explanation relies
on general requirements on the eigenvalue distribution func-
tions of the relevant quantum operators that represent the in-
teraction of the system with the environment. Hence, experi-
mental observation of eigen-selectivity would provide a direct
evidence of the correlated dynamics between the spin sys-
tem and the quantum environment that preludes the reach to
quasi-equilibrium.

The aim of this work is the experimental study of de-
coherence spin dynamics, within the theoretical framework
of QD-I. Particularly, we focus on the most relevant as-
pects of this phenomenon, namely, eigen-selectivity and the
occurrence of the intermediate time scale. Irreversible de-
coherence is studied by means of refocusing experiments,
designed to counteract the effect of the spin dynamics
generated by the dipolar spin interactions. Besides of the
quantum interference corresponding to a closed system, the
intrinsic decoherence coexists with other sources of the sig-
nal decay, like the line broadening due to a distribution of
the order parameter,22 non-idealities of the experimental set-
ting like inhomogeneity of the static and rf magnetic fields
or pulse imperfections, and the effects of non-secular terms
of the dipolar Hamiltonian that cannot be experimentally
reversed.23 Accordingly, to isolate the distinctive features of
decoherence associated only with the microscopic dynamics,
we explore the intermediate time scale by combining dipo-
lar refocusing with a meticulous theoretical and numerical
analysis of the experiments based on hypotheses of general
character. This strategy enables us to visualize the physi-
cal processes involved and to quantify the influence of the
non-idealities.

Confirmation of the irreversibility of the spin dynamics
within the intermediate time scale has relevant practical and
basic consequences. It implies that the state attained by the
spin system over the intermediate scale has a representation in
the form of a block diagonal density operator, containing the
information of the initial preparation which does not under-
gone subsequent evolution, except for the slow dynamics im-
posed by the spin-relaxation process, no matter the details of
the coherences present in the initial condition. The traditional
introduction of the spin-temperature hypothesis amounts to
assuming that the off-diagonal density matrix elements can
be forgotten after quantum interference cancels their contri-
bution to the observable expectation value.24 In this work we
provide a quantum explanation for the damping of the off-
diagonal elements and for the time scale where it occurs. Clar-
ifying this aspect enables to replace the phenomenological
assumption by a specific condition satisfied by the spin sys-
tem state. Also, understanding the nature of the decoherence
mechanism can contribute to the set up of a quantum spin-
lattice relaxation theory beyond the Markovian limit, pro-
viding insight into the interplay of the quantum correlations
developed in the microscopic irreversible dynamics and the
dissipative macroscopic evolution. Finally, the analysis car-
ried out in this work may contribute to the current discus-
sion about the role of system-environment entanglement as
basic mechanism of quantum decoherence of interacting par-
ticle systems.1, 25–27

The article is organized as follows. In Sec. II, by means
of experiments of refocusing of the dipolar interactions, we
show how the eigen-selection process is evidenced during
the partial reversion of the spin dynamics, which occurs in
an intermediate time scale, between the time scales of the
Liouvillian free evolution or adiabatic by one hand, and the
thermalization and relaxation processes by the other hand.
Section II A is devoted to a detailed summary of the concepts
developed and results obtained in QD-I, which are exhaus-
tively used in this work. In Sec. II B a theoretical description
of the decoherence dynamics driven by reversion experiments
is presented, while a series of experimental measurement are
shown in Sec. II C and the results compared with the theo-
retical prediction. Section II D is concerned with the analy-
sis of possible sources of eigen-selectivity like effects coming
from a closed-spin-system dynamics under experimental mis-
adjustments or non-idealities in the theoretical approach used
for its description. A supplementary material28 is attached to
this work, where the details about the origin of the theoretical
expression for the reversion evolution operator and the signals
obtained in Sec. II D are presented together with the results
of numerical calculations for such signals under different ex-
perimental settings. Besides, an experimental analysis of the
effects of the inhomogeneity of the static magnetic field is
presented there.

Finally, Sec. III is devoted to discuss and conclude about
the concepts developed and results obtained along this work.

II. EIGEN-SELECTIVITY EFFECTS
ON COHERENCE EVOLUTION

This section is dedicated to the experimental detection
of the eigen-selection process which characterizes the irre-
versible time evolution of the spin coherence in LC’s, due to
the coupling of the spin system to a quantum lattice or envi-
ronment. This will be done within the framework of the theo-
retical proposal presented in QD-I.

A. Theoretical background

For the convenience of the reader, hereinafter we include
a brief summary of the steps followed in QD-I to work out
the nonequilibrium irreversible dynamics of an observed and
controlled system coupled to an external unobserved envi-
ronment. This problem was approached using the following
Hamiltonian:

H = HS + HSL + HL, (1)

where HS = H(s)
S ⊗ 1(f ) and HL = 1(s) ⊗ H(f )

L are, respec-
tively, the Hamiltonians of the observed system (i.e., the spin
system) and the lattice or unobserved environment. Symbols
of the form O(s) and O(f) indicate operators acting exclusively
on the Hilbert space of the system and the lattice, respectively.
The interaction Hamiltonian acts on both Hilbert spaces, and
is represented by HSL = ∑

q FqAq , with Fq = 1(s) ⊗ F(f )
q ,

and Aq = A(s)
q ⊗ 1(f ). Index q can label different character-

istics, like a spin pair or a tensor component of the interaction
Hamiltonian.

The existence of distinct time scales associated with dif-
ferent physical processes, which become important as the spin
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dynamics evolves, was postulated. The occurrence of such
time scales is subjected to certain general conditions that the
relevant Hamiltonians must fulfill. Such requirements are as-
sociated with commutation relations between HS , HL, and
HSL (it is worth to note that [HS,HL] = 0). In this way, the
dynamics of the observed system in the earlier time scale
is obtained by assuming that [HS,HSL] = 0 and [HL,HSL]
= 0, which implies a system model called essentially isolated
system, where the observed system evolves reversibly and the
expectation values of the observables decay due to quan-
tum interference. A later time scale is obtained by assuming
[HS,HSL] = 0 and [HL,HSL] �= 0, where the system model
was referred to as essentially adiabatic system, and the corre-
sponding dynamics of its observables is irreversible. Finally,
the latest time scale is obtained by assuming [HS,HSL] �= 0
and [HL,HSL] �= 0, and the system model was named system
in thermal contact.

The focus in QD-I was laid on the study of pure deco-
herence processes of the observables due to the coupling of
the system to a quantum environment, without thermaliza-
tion and relaxation effects. Therefore, the dynamics of the ob-
served system was studied assuming [HS,HSL] = 0, namely,
the system dynamics was described under essentially isolated
or essentially adiabatic models, where the observed system
conserves its energy.

Within this framework, in the following we will present
the Hamiltonians which describe the NMR experiments on a
wide variety of nematic LC’s. Also, we will explain the pro-
cedure for averaging over the lattice variables involved in the
definitions. Hereinafter, all the Hamiltonians are expressed in
units of ¯. First, we write the full-quantum dipolar Hamilto-
nian of nematic LC’s as

Hd =
∑

i

Hdi, (2)

where

Hdi = H(s)
di ⊗ S(f )

zzi , (3)

with

H(s)
di = 1(s1) ⊗ · · · ⊗ H(si )

d ⊗ · · · ⊗ 1(sN ).

In the former equations, index i labels the ith molecule and
the sum runs over the molecules of the whole sample. The su-
perscript (si) indicates an operator acting on the spin Hilbert
space of the ith molecule. The operator H(si )

d is the spin
part of the contribution to the dipolar Hamiltonian of the ith
molecule, which is written as

H(si )
d = −3

2
γ 2¯

∑
j �=k

1

r3
jk

(
3

2
cos2 βjk − 1

2

)

×
(

IzjIzk − 1

3

−→
Ij ·−→Ik

)(si )

. (4)

The expression (4) is the secular part of the dipolar Hamil-
tonian, which is adequate for describing the spin dynamics
in the high intensity external static magnetic field approxima-
tion. The indices j, k run over all the proton sites within the
ith molecule, rjk is the internuclear distance between spins j
and k, β jk stands for the polar angle of the vector −→

rjk with

respect to the system fixed to the molecule. The spin angular

momentum is
−→
Ij = Ixjx̂ + Iyjŷ + Izjẑ. The introduction of the

quantum character of the environment variables in Eq. (3) is
carried out by the operators S(f )

zzi . That is a novel contribution
of QD-I, which allows a general description of the dipolar
Hamiltonian in liquid crystal NMR with the important con-
sequence that the quantum correlation between the observed
system and the environment can be included in the dynam-
ics. Precisely, as shown in QD-I, the irreversibility of the spin
dynamics naturally emerges in the decoherence time scale
when the full-quantum character of the spin-environment in-
teraction energy is assumed. The meaning of S(f )

zzi is that of a
molecular orientational operator whose eigenvalues Si are re-
lated with the angle θ i between the long molecular axis of the
ith molecule and the external static magnetic field

−→
B0, where

Si = ( 3
2 cos2 θi − 1

2 ).
In the definition of Eq. (2), we used a kind of motionally

averaged dipolar Hamiltonian approach.11 This means, in a
quantum language, that the eigenvalues of the intermolecular
lattice operators of the dipolar Hamiltonian are negligible in
comparison with the intramolecular ones and the time scale
of the dynamics originated from the intermolecular dipolar
terms is much longer than that of the intramolecular one. Ac-
cordingly, such slow dynamics can be neglected by eliminat-
ing the intermolecular terms from the dipolar Hamiltonian.

The average dipolar energy is obtained through the equi-
librium lattice density operator as

〈Hdi〉f = trf {HdiρL(eq)}, (5)

where the trace is taken over the lattice variables, 〈 · 〉f

≡ trf{ · ρL(eq)} denotes the expectation value, and ρL(eq) is the
lattice density operator at thermal equilibrium,

ρL(eq) = 1(s) ⊗ ρ
(f )
L(eq) = 1(s) ⊗ e−βT H(f )

L /Nf , (6)

where βT ≡ 1
kBT

, kB is the Boltzmann constant, T is the ab-

solute temperature, and Nf ≡ trf {e−βT H(f )
L }. The molecular

dipolar Hamiltonian corresponding to the closed spin system
is obtained by tracing over the lattice variables in Eq. (5):

〈Hdi〉f = SzzH
(s)
di ⊗ 1(f ), (7)

with the definition of the nematic order parameter Szz
12 as

Szz ≡ 〈
S(f )

zzi

〉
f

= trf

{
S(f )

zzi ρ
(f )
L(eq)

}
=

∑
f

Si(f )〈f |ρ(f )
L(eq)|f 〉, (8)

where {| f 〉} is an eigenbasis of the operator S(f )
zzi with

S(f )
zzi |f 〉 = Si(f )|f 〉. If we consider an homogeneous environ-

ment for each molecule (i.e., absence of border effects) and
also assume that the environment states form a continuous
and dense space, following the results in Appendix A, the or-
der parameter (8) has the same value for different molecules
and it can be expressed as

Szz =
∫

dS1S1p
{S}
1 (S1), (9)

where p
{S}
1 (S1) is the distribution function of the eigenvalues

S1 of one molecule, which is the same distribution for each
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molecule in the sample, and satisfies
∫

dS1p
{S}
1 (S1) = 1. It is

worth to note that p
{S}
1 (S1) is the orientational molecular dis-

tribution function (OMDF) studied in QD-I (in this reference
the OMDF is written as p(S1)). Besides, the expression (9) has
the form of the usual definition of the order parameter in the
literature.12

To complete the description of NMR experiments in ne-
matic LC’s under a full-quantum approach with a Hamilto-
nian form like Eq. (1), together with the dipolar Hamiltonian
(2) we have to include the Zeeman and the lattice Hamiltoni-
ans. The Zeeman Hamiltonian is written as

HZ = −ω0Iz = −ω0

∑
i

Izi, (10)

where ω0 = γ B0 is the Larmor frequency, γ is the proton
gyromagnetic ratio, B0 is the strength of the static magnetic
field, which is applied along the laboratory ẑ axis, and Izi is
the ẑ projection of the total proton spin angular momentum of
the ith molecule.

The environment or lattice Hamiltonian HL is associated
with the potential energy of the mechanical interaction be-
tween the molecules of the whole sample. This Hamiltonian
takes into account the molecules as an ensemble of correlated
quantum objects. The details of the mechanical intermolecu-
lar interaction are not needed to extract some general conclu-
sions about the influence of the environment on the spin dy-
namics. In fact, knowing whether HL commutes or not with
the interaction Hamiltonian HSL is enough for concluding
about the reversible or irreversible character of decoherence
in some time scale, as was shown in QD-I. However, the in-
fluence of HL is indirectly taken into account in the molecular
averaged values of lattice operators, as is seen in Eq. (5), and
also in the distribution probability function of the eigenvalues
of such operators, as we will show in Sec. II B.

Finally, using the average dipolar Hamiltonian of the spin
as a closed system

〈Hd〉f =
∑

i

〈Hdi〉f , (11)

we define the Hamiltonians in Eq. (1) as

HS = HZ + 〈Hd〉f =
∑

i

HSi, (12)

with

HSi = −ω0 Izi + 〈Hdi〉f , (13)

and

HSL = Hd − 〈Hd〉f =
∑

i

HSLi, (14)

with

HSLi = H(s)
di ⊗ (

S(f )
zzi − Szz1(f )

)
. (15)

Below, we discuss how the environment induced deco-
herence emerges when the dynamics of the system is de-
scribed through the Hamiltonian of Eq. (1). Our strategy is
the calculation of the reduced spin density matrix from the
time-evolved density operator of the whole system, under the
total Hamiltonian (1).

It is convenient for comparison with NMR experiments to
use the rotating-frame representation, namely, a frame whose
z-axis is parallel to the external magnetic field and rotates
about it with an angular frequency equal to the Larmor fre-
quency. Thus, in this frame the time evolution of the density
matrix is

ρ̂(t) = Û(t)ρ̂S(0)ρL(eq)Û†(t), (16)

where Ô ≡ e−iω0IztOeiω0Izt is the representation of an opera-
tor O in the rotating-frame, and

Û(t) = e−iĤS t e−i(
∑

i HSLi+HL)t , (17)

where ĤS = ∑
i〈Hdi〉f is the transformed spin Hamiltonian.

Here, we introduce the eigenbasis of the operators H(s)
di ,

{| ζ s 〉 ≡ | ζ 1s1 〉⊗· · ·⊗| ζ isi 〉⊗· · ·⊗| ζ NsN 〉}, which span the
spin Hilbert space of the N molecules of the sample. The sym-
bols ζ i’s indicate the different eigenvalues and si label their
degeneration, thus H(s)

di |ζ s〉 = ζi |ζ s〉. Hereinafter, the symbol
ζ will represent dependence on the set of eigenvalues {ζ i} be-
longing to the molecules of the whole sample. Consequently,
in the rotating-frame, {| ζ s 〉} is an eigenbasis for both, the
spin part of the interaction Hamiltonian HSL (i.e., the dipo-
lar Hamiltonian) and the spin (or observed system) Hamilto-
nian ĤS . The initial state of the spin system ρ̂S(0) is obtained,
for example, after applying a radiofrequency pulse sequence.
Therefore, the matrix elements of the reduced density opera-
tor, σ̂ (t), in the basis {| ζ s 〉} are

〈ζ s |̂σ (t)|ζ ′s ′〉 = trf {〈ζ s|ρ̂(t)|ζ ′s ′〉}
= e−i

∑
i (ζi−ζ ′

i )Szzt 〈ζ s|ρ̂(s)
S (0)|ζ ′s ′〉G{ζ,ζ ′}(t),

(18)

where

G{ζ,ζ ′}(t) = trf

{
U†(f )(ζ ′, t)U(f )(ζ, t)ρ(f )

L(eq)

}
(19)

is the decoherence function associated with the time evolution
operator

U(f )(ζ, t) = e−i(
∑

i ζiH(f )
SLi+H(f )

L )t . (20)

It is worth to note that the evolution operator (20) and thus
the decoherence function (19) depend on the spin eigenval-
ues of the molecules of the whole sample, this dependence is
represented by the symbols ζ and ζ ′.

In order to explicit the spin dynamics of a representative
molecule, say the ith one, we use the operator expansion tech-
nique due to Zassenhaus to factorize the evolution operator
(20) into a product of exponential operators, as follows:11, 29

U(f )(ζ, t) = e−iH(f )
Ri (ζ )t e−iζiH(f )

SLi tU(f )(SLi)
C (ζ, t), (21)

where we defined the operator

H(f )
Ri (ζ ) ≡

∑
j �=i

ζjH(f )
SLj + H(f )

L . (22)

Again, the dependence of operator (22) with the spin eigen-
values {ζ j} of all the molecules excepting the ith is taken into
account by the general symbol ζ . At the same time, the third
factor in (21) can be expanded as

U(f )(SLi)
C (ζ, t) = et2C(f )(SLi)

2 (ζ )et3C(f )(SLi)
3 (ζ ) · · · , (23)
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where C(f )(SLi)
q (ζ ) represents some (q-1)-order nested com-

mutator between Hamiltonians H(f )
Ri (ζ ) and ζiH(f )

SLi . It is
worth to anticipate that these nested commutators, which
emerge from the quantum character of the environmental vari-
ables, will produce an irreversible decoherence spin dynamics
in an intermediate time scale between the coherence and the
thermalization processes, along which the quasi-equilibrium
develops.11

In keeping with the same spirit of separating the molec-
ular spin dynamics, we consider the cases where the initial
condition ρ̂S(0) can be expressed as

ρ̂S(0) = 1

NN−1
S1

∑
i

ρ̂
(s)
Si (0) ⊗ 1(f ), (24)

where NS1 ≡ trs1{1(s1)} is the trace of the identity operator
in the Hilbert space of the spins belonging to a molecule,
ρ̂

(s)
Si (0) = 1(s1) ⊗ · · · ⊗ ρ̂(si )(0) ⊗ · · · ⊗ 1(sN ), where ρ̂(si )(0) is

the initial spin density matrix of the ith molecule, which is as-
sumed identical for all molecules. Then, the matrix elements
of (24) in the spin space are〈

ζ s
∣∣ρ̂(s)

S (0)
∣∣ζ ′s ′〉 = 1

NN−1
S1

∑
i

〈ζ s|ρ(s)
Si (0)|ζ ′s ′〉

= 1

NN−1
S1

∑
i

〈ζisi |ρ̂(si )(0)|ζ ′
i s

′
i〉

∏
j �=i

δ
ζj sj

ζ ′
j s

′
j
,

(25)

where we defined∏
j �=i

δ
ζj sj

ζ ′
j s

′
j

≡ δζ1s1,ζ
′
1s

′
1
· · · δζN sN ,ζ ′

N s ′
N
,

as the product of the N − 1 Krönecker deltas associated with
all the molecules different from the ith one. Then, by using
Eqs. (21) and (25), Eq. (18) can be expressed as

〈ζ s |̂σ (t)|ζ ′s ′〉 =
∑

i

e−i(ζi−ζ ′
i )Szzt 〈ζisi |ρ̂ (si )(0)|ζ ′

i s
′
i〉

×
∏
j �=i

δ
ζj sj

ζ ′
j s

′
j

G{ζ,ζ ′
i }(t)/N

N−1
S1

, (26)

where G{ζ,ζ ′
i }(t) is the decoherence function (19) for the cases

where the Krönecker deltas present in Eq. (25) do not can-
cel. Because of the delta functions, (19) is evaluated when
ζj = ζ ′

j ,∀j/j �= i, for the expression shown in Eq. (21),

hence H(f )
Ri (ζ ) = H(f )

Ri (ζ ′) and in U(f )(SLi)
C (ζ, t) only ζ i is un-

affected by such delta functions (i.e., it can be ζi �= ζ ′
i ). This

reasoning leads to the following expression for the decoher-
ence function:

G{ζ,ζ ′
i }(t) = trf

{
U†(f )(SLi)

C,ζ ′
i

(ζ, t)e−i(ζi−ζ ′
i )H(f )

SLi t

× U(f )(SLi)
C (ζ, t)ρ(f )

L(eq)

}
, (27)

where we introduced the operator U(f )(SLi)
C,ζ ′

i
(ζ, t) which can

differ from U(f )(SLi)
C (ζ, t) only by the replacement of ζ i by

ζ ′
i . It is worth to remark that if ζi = ζ ′

i in (27), then the deco-
herence function satisfies

G{ζ,ζi }(t) = trf

{
ρ

(f )
L(eq)

} = 1,

which indicates that decoherence does not affect the subspace
associated with a given degenerate eigenvalue ζ i. An impor-
tant consequence of this is that, if in the matrix representation
of the spin density operator ρ̂ (si )(0) in the eigenbasis of H(si )

SL

the eigenstates are ordered, in such way that blocks associ-
ated with a given eigenvalue ζ i are formed in the diagonal,
these blocks remain invariant under decoherence. This prop-
erty, which was already reflected in Eq. (19) for ζ = ζ ′, is
of great importance in the dynamics that brings the spin sys-
tem into a quasi-equilibrium state. In particular, this means
that the quasi-invariant spin operators have to commute with
the spin part of the interaction Hamiltonian11 (i.e., the dipolar
Hamiltonian in our case), but they need not commute with the
Zeeman Hamiltonian. Therefore, several quasi-invariants that
do not present evolution in the intermediate time scale could
present a time dependence under the Zeeman evolution oper-
ator and they will not be quasi-invariants out of the rotating-
frame anymore. Accordingly, the matrix form of the spin den-
sity operator (26) (or (18)) in the eigenbasis {| ζ s 〉} does not
depend on time when the quasi-equilibrium state is reached.
It is worth to note that in the common eigenbasis {| Es 〉} that
diagonalize both the dipolar and the Zeeman Hamiltonians,
which was presented in QD-I, the matrix form of such quasi-
invariants could present time-dependent complex exponential
factors with frequencies given by the Zeeman eigenvalues.

Finally, a zero-trace spin observable acting on the spin
space of individual molecules, and which is time independent
in the rotating-frame, has the general form:

Ô =
∑

i

Ô(s)
i ⊗ 1(f ), (28)

with Ô(s)
i = 1(s1) ⊗ · · · ⊗ Ô(si ) ⊗ · · · ⊗ 1(sN ). By using

Eq. (26), the expectation value of Ô can be written as

〈Ô〉(t) =
∑

i

∑
ζi si ,ζ

′
i s

′
i

〈ζisi |ρ̂ (si )(0)|ζ ′
i s

′
i〉

× 〈ζ ′
i s

′
i |Ô(si )|ζisi〉e−i(ζi−ζ ′

i )SzztG{ζi ,ζ
′
i }(t), (29)

with

G{ζi ,ζ
′
i }(t) ≡

ζk �=ζi ,sk �=si∑
ζ1s1,...,ζN sN

G{ζ,ζ ′
i }(t)/N

N−1
S1

, (30)

where the sum in Eq. (30) runs over all the values of ζk and sk

with k �= i, thus this sum only conserves the dependence with
the spin eigenvalues ζi and ζ ′

i of the ith molecule. It is worth
to note that the decoherence function (30) characterizes the
decoherence process of the ith molecule but it preserves cor-
relations with the remaining molecules of the sample through
the functions G{ζ,ζ ′

i }(t); such correlations are produced by the
environment operators in the Hamiltonians through the nested
commutators in the evolution operator (23), thus they have a
quantum character.

The irreversibility of the spin dynamics is introduced
through the environment induced quantum decoherence as-
sociated with an open quantum system characterized as an es-
sentially adiabatic system. According to the theory, the eigen-
selection process, prominently involved in the decoherence
dynamics, leaves invariant the block diagonal space of the
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density operator drawing it to a quasi-equilibrium represen-
tation. As will be shown below, the experimental measure-
ments confirm the eigen-selection effects during the coher-
ence evolution under a process of partial reversion of the spin
dynamics. Besides, two different time scales associated to dif-
ferent sources of decoherence will be distinguished, one of
them during free evolution and the other under refocusing of
the coherences. The experiments designed with the purpose
of observing such effects are shown in Sec. II B, which are
based on the free induction decay (FID) single quantum co-
herence signal. However, the procedure and the results can be
extended to any kind of coherence.

B. Definition of the experiments

In order to highlight the contribution to the coherence sig-
nal decay coming from sources other than the Liouvillian dy-
namics corresponding to an isolated spin system (i.e., quan-
tum interference), we will measure the single coherence sig-
nal evolution of the FID, when the spins are subjected to a
rf pulse sequence configured to compensate the Liouvillian
evolution. An experiment of reversion of the spin dynamics
under the high field secular dipolar Hamiltonian could be per-
formed, for instance, by means of the single sequence shown
in Figure 1(a) or the sequence known as MREV830–33 which
is shown in Figure 1(b). An explanation of the effect on the
spin dynamics due to such kind of reversion sequences can
be found in the supplementary material (see Sec. II in the
supplementary material28 for details on the reversion spin dy-
namics). These kinds of sequences were selected because the
efficiency of the reversion process relies on the relationship
between the total time of the FID evolution and the setting
time between pulses. In these reversion pulse sequences, the

FIG. 1. Experimental pulse sequences. (a) Single reversion. (b) MREV8. (c)
Compound reversion sequence, where each reversion block RS(i) constitutes
a single reversion sequence like the MREV8.

smaller the setting times τ 1 and τ 2 are, the better the rever-
sion will be. Therefore, to access to long reversion periods
while keeping the time parameters as small as possible, we
apply a pulse sequence consisting of a chain of blocks of
the same reversion unit, as is shown in Figure 1(c). On the
other hand, in other techniques like the “magic-sandwich”
(MS)23, 34–37 the effectiveness of the reversion depends on the
use of high intensity rf pulses with increasing duration, which
could become inadequate for cases of long time evolutions,
as is the case of the nematics PAAd6 (methyl deuterated para-
azoxyanisole) and PAA (para-azoxyanisole) studied in this
work.

Using the results obtained throughout Sec. III D 2 of QD-
I, we can calculate the evolution operator that represents the
spin dynamics due to the pulse sequence of Figure 1(c) in the
rotating-frame representation, that is

Û(t, t2, t1) = Û(t)Ûrt(t2)Û(t1), (31)

where Û is the free evolution operator (17) and Ûrt is the re-
version dynamics evolution operator, which is defined as

Ûrt(t) = eiĤS t/κei(
∑

i HSLi/κ−HL)t , (32)

with κ as a positive constant whose value depends on the par-
ticular refocusing technique used. For the pulse sequences (a)
and (b) of Figure 1, κ = 2. In the case of a single-block rever-
sion sequence, we have t1 ≡ τ 1 (or t1 ≡ 4τ 1) and t2 ≡ τ 2

(or t2 ≡ 4τ 2), with τ 1 and τ 2 defined in Figure 1(a) (or
Figure 1(b)). On the other hand, in the case of the chaining
block sequence shown in Figure 1(c), we have t1 ≡ nτ 1 (or t1
≡ 4nτ 1) and t2 ≡ nτ 2 (or t2 ≡ 4nτ 2), being n the number of
blocks of the pulse sequence of Figure 1(a) (or Figure 1(b)).
Equation (32) represents the dynamics under an MREV8-like
sequence when the experimental setting has τ 1 and τ 2 small
enough to neglect the non-secular terms of the dipolar Hamil-
tonian which arises from applying the π /2 pulse pairs33 (see
also Sec. II in the supplementary material28 for details about
the emergence of the operator factor eiĤS t/κ ). This constraint
is imposed over each block in the sequence of Figure 1(c) but
the total times nτ 1 (or 4nτ 1) and nτ 2 (or 4nτ 2) do not need to
be so small.

By applying the evolution operator (31) to the state | ζ s 〉,
it is obtained

Û(t, t2, t1)|ζ s〉 = e−i
∑

i ζiSzz(t+t1−t2/κ)|ζ s〉
⊗ U(f )(ζ, t, t2, t1), (33)

where we defined

U(f )(ζ, t, t2, t1) ≡ U(f )(ζ, t)U(f )(ζ, t2, t1). (34)

Truncating the Zassenhaus expansion of Eq. (34) to the first
order gives

U(f )(ζ, t, t2, t1) ∼= e−iH(f )
Ri (ζ )t e−iH(f )

Ri (−ζ/κ)t2

× e−iH(f )
Ri (ζ )t1e−iζiH(f )

SLi (t+t1−t2/κ)

× eζiC
(f )
i,SL(ζ )(t2−2t t2/κ+2t t1+t2

1 +t2
2 /κ2−2t1t2/κ)/2

× eζiC
(f )
i,L(t2+2t t2+2t t1+t2

1 −t2
2 /κ−2t1t2/κ)/2, (35)
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where the operators

C(f )
i,SL(ζ ) ≡

[ ∑
j �=i

ζjH(f )
SLj ,H

(f )
SLi

]
, (36)

C(f )
i,L ≡ [

H(f )
L ,H(f )

SLi

]
(37)

are anti-Hermitian and thus they have pure imaginary eigen-
values. The expression in Eq. (35) is valid for the intermediate
time scale, under the postulate of the existence of different
time scales described in Sec. II A. Similar to Eq. (22), the
symbol ζ in the commutator (36) represents dependence with
the spin eigenvalues of all the molecules except for the ith
one.

Now, using Eq. (35) we can obtain, with the same spirit as
in QD-I, the decoherence function for the spin dynamics valid
for a first time scale longer than the Liouville characteristic
time scale, that is

G{ζ,ζ ′
i }(t, t2, t1)

= trf

{
U†(f )

ζ ′
i

(ζ, t, t2, t1)

× U(f )(ζ, t, t2, t1)ρ(f )
L(eq)

}
= trf

{
e−i(ζi−ζ ′

i )H(f )
SLi (t+t1−t2/κ)

× e−i(ζi−ζ ′
i )iC(f )

i,SL(ζ )(t2−2t t2/κ+2t t1+t2
1 +t2

2 /κ2−2t1t2/κ)/2

× e−i(ζi−ζ ′
i )iC(f )

i,L(t2+2t t2+2t t1+t2
1 −t2

2 /κ−2t1t2/κ)/2ρ
(f )
L(eq)

}
, (38)

where we introduced the operator U(f )
ζ ′
i

(ζ, t, t2, t1) which can

differ from U(f)(ζ , t, t2, t1) only by the replacement of ζ i by
ζ ′
i . The operators iC(f )

i,SL and iC(f )
i,L appearing in Eq. (38), are

Hermitian due to the anti-Hermitian character of the commu-
tators, as we have seen in (36) and (37), thus their eigenvalues
are pure real numbers. By making t2 = κt1 (i.e., τ 2 = κτ 1),
we eliminate the Liouville dynamics during the reversion and
in this case Eq. (38) becomes

G{ζ,ζ ′
i }(t, t1) = trf

{
e−i(ζi−ζ ′

i )H(f )
SLi t

× e−i(ζi−ζ ′
i )iC(f )

i,L{[t+(κ+1)t1]2−(κ2+3κ+2)t2
1 }/2

× e−i(ζi−ζ ′
i )iC(f )

i,SL(ζ )t2/2ρ
(f )
L(eq)

}
, (39)

with the definition G{ζ,ζ ′
i }(t, t1) ≡ G{ζ,ζ ′

i }(t, κt1, t1), which
represents that the above condition gives a decoherence func-
tion which depends just on the reversion time t1.

To extract a final expression for the decoherence func-
tion, we use that the environment states form a continuous
and dense space, so that we can replace in Eq. (39) the sum in
the trace by an integral over the lattice space. This procedure
is detailed in Appendix B, obtaining

G{ζ,ζ ′
i }(t, τ ) =

∫
dSi e−i(ζi−ζ ′

i )Si t

×
∫

dCL
i e−i(ζi−ζ ′

i )CL
i {(t+τ )2−[1+(κ+1)−1]τ 2}/2

×
∫

dCSL
iζ e−i(ζi−ζ ′

i )CSL
iζ t2/2 pi

(
Si, C

L
i , CSL

iζ

)
,

(40)

where τ = (κ + 1) t1 is the total time under reversion, Si,
CL

i , and CSL
iζ are, respectively, the eigenvalues of the operators

H(f )
SLi , iC

(f )
i,L , and iC(f )

i,SL(ζ ), which are real numbers. The index
ζ in CSL

iζ stands for dependence with the spin eigenvalues in
the same sense as in Eq. (36). Accordingly, dSi, dCL

i , and
dCSL

iζ are the differentials of those eigenvalues. In Eq. (40),
the function pi(Si, C

L
i , CSL

iζ ) satisfies

∫
dSi

∫
dCL

i

∫
dCSL

iζ pi

(
Si, C

L
i , CSL

iζ

) = 1,

thus it can be interpreted as a probability distribution function
of the eigenvalues given by Si, CL

i , and CSL
iζ .

We can see from Eq. (40) that the decoherence function
is the result of a superposition of complex exponential func-
tions weighted by a distribution of their frequencies. We are
concerned with studying the decoherence function produced
by the coupling of the spin system with an environment whose
states belong to a continuous and dense Hilbert space, where a
distribution of the eigenvalues of each complex exponential in
Eq. (40) can be defined. In that physic system, such distribu-
tion is supposed to have a general bell-shape form around the
mean value of the eigenvalues, converging to zero fast enough
so that integrations in Eq. (40) can be extended to ±∞. Pre-
sumably, these conditions on the eigenvalue distribution func-
tions are similar to those imposed in the work of Ref. 20 to de-
rive the equilibration of “quasi-isolated quantum systems” in
the strict sense. Due to the general bell-shape form assumed
for the distribution functions pi(Si, C

L
i , CSL

iζ ) characteriz-
ing the environment of our physical system, the superposition
of complex exponentials functions which constitutes (40) will
have a form of a decay function in the time t and/or τ . It is
easy to see that the bigger the value of ζ i is, the faster the
decay of such function will be. In the case of ζ i = 0 (i.e.,
ζi = ζ ′

i ) we have G{ζ,ζ ′
i }(t, τ ) = 1 and we do not have a decay.

All these characteristics are described as eigen-selectivity or
eigen-selection effect over the dynamics of the observed sys-
tem, as we have seen in QD-I and at the end of Sec. II A (see
Eq. (27)).

This feature of the decoherence function, produced by the
eigen-selectivity, is still obtained from a non-truncated time
evolution operator, having a more complex form than (35). In
such case, the form of the decoherence function will be like
(40) but with a more extensive development of integrals due
to a bigger amount (maybe infinite) of eigenvalues coming
from nested commutators of increasing order, and with a more
complex distribution function pi. Therefore, a complete form
(i.e., without truncating) of the decoherence function (40) can
be expressed as

G{ζ,ζ ′
i }(t, τ ) =

∫∫∫ ∏
D,n

{
dC

D,n
iζ e−iζiYD,n(t,τ )CD,n

iζ

}

×
∫

dSi e−iζiSi t pi

(
Si,

{
C

D,n
iζ

})
,

(41)
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with ∫∫∫ ∏
D,n

{
dC

D,n
iζ

} ∫
dSi pi

(
Si,

{
C

D,n
iζ

}) = 1,

where
∫∫∫ ∏

D,n{·} represents multiple integrals over the
eigenvalues of different class of nested commutators labeled
by D and with a nesting order n. Such eigenvalues are gener-
ically termed C

D,n
iζ . The polynomials YD,n(t, τ ) are func-

tions of t and/or τ which multiply the corresponding C
D,n
iζ

eigenvalue in the complex exponential functions. The symbol
{CD,n

iζ } represents the set of such eigenvalues. It is worth to
note that the general expression (41) is valid for any kind of
experimental setting, the only difference between experiments
can be the forms of the polynomials YD,n with a possibly dif-
ferent time dependence.

In the following, in order to extract a more handleable
version for the decoherence function, which in turn is useful
for taking account of some features of the experimental re-
sults, we will introduce the hypothesis of the existence of dif-
ferent time scales in the dynamics, as was assumed previously
in Sec. II A. Under such hypothesis, the dynamics produced
by the exponential operator with H(f )

SLi , which was called re-
versible adiabatic quantum decoherence in QD-I, is faster
than the dynamics produced by the remaining exponential op-
erators containing nested commutators, which was called irre-
versible adiabatic quantum decoherence in QD-I. Hence, the
decay time produced by the complex exponentials with Si is
smaller than the ones associated to the remainder exponentials
with eigenvalues C

D,n
iζ . The experimental evidences11, 13 show

that these two time scales are very well separated. Therefore,
in Eq. (41), for a time t over which the decay function pro-
duced by the complex exponential with Si is close to vanish,
the values of the exponentials with eigenvalues C

D,n
iζ do not

significantly deviate from their values for t = 0, thus the de-
coherence function can be very well approximated replacing
the multiple integrals over such eigenvalues by their values in
t = 0, namely, it can be approximated using

∫∫∫ ∏
D,n{·}t=0.

Finally, applying this approximation to the particular case
of Eq. (40) gives

G{ζ,ζ ′
i }(t, τ ) �

∫
dSi e−i(ζi−ζ ′

i )Si t

×
∫

dCL
i ei(ζi−ζ ′

i )CL
i τ 2/[2(κ+1)] pi

(
Si, C

L
i

)
,

(42)

where it is defined the function

pi

(
Si, C

L
i

) ≡
∫

dCSL
iζ pi

(
Si, C

L
i , CSL

iζ

)
.

From Eq. (42), we see that under such approximation the de-
pendence of the decoherence function on CSL

iζ is eliminated
in Eq. (40), thus the decoherence function only depends on
the difference of the values ζi − ζ ′

i (i.e., the differences of
the eigenvalues of the interaction Hamiltonian spin part be-
longing to the ith molecule). Therefore, under the mentioned
approximation, we will have from Eq. (30) that

G{ζi ,ζ
′
i }(t, τ ) ≡ G{ζ,ζ ′

i }(t, τ ),

where in the decoherence function G{ζ,ζ ′
i } the dependence of

the spin eigenvalues of the molecules other than the ith (taken
into account with the symbol ζ ) is removed. However, no-
tice that the environmental quantum correlations between the
molecules of the sample are preserved.

Two additional hypotheses of general character will be
assumed on the decoherence function, as follows:

HypoG-I: Statistical independence between the eigen-
values �Si and CL

i , ∀i. This hypothesis is reason-
able due to the different nature of the spectral proper-
ties of their operators.11 This is written as pi(Si, C

L
i )

∼= p
{S}
i (Si)p

{CL}
i (CL

i ) and it brings us the possibility
of writing Eq. (42) as

G{ζi ,ζ
′
i }(t, τ ) ≡ G{ζi ,ζ

′
i }(t)G

(rt)
{ζi ,ζ

′
i }(τ ),

with

G{ζi ,ζ
′
i }(t) ≡

∫
dSi e−i(ζi−ζ ′

i )Si t p
{S}
i (Si) (43)

and

G
(rt)
{ζi ,ζ

′
i }(τ ) ≡

∫
dCL

i ei(ζi−ζ ′
i )CL

i τ 2/[2(κ+1)] p
{CL}
i

(
CL

i

)
.

(44)

HypoG-II: Homogeneous environment for each
molecule, i.e., absence of border effects. This is
written as pi(Si, C

L
i ) ≡ pj (Sj , C

L
j ), ∀i, j, and it

brings us the relationship

G{ζi ,ζ
′
i }(t, τ ) ≡ G{ζj ,ζ

′
j }(t, τ ), ∀i, j.

At this point, some comments about the MREV8 pulse
sequence used in the experiments are pertinent. This sequence
is composed of two sequences WHH-4,38 which correspond
to each half in Figure 1(b). Due to the symmetric disposition
of the pulses in the MREV8 sequence, the expression of the
evolution operator (31) in this case actually has the form:

Û(t, t2, t1) = Û(t)Û(t1/2)Ûrt(t2)Û(t1/2),

which is symmetric in the reversion times (i.e., t1 and t2).
Accordingly, it can be seen that the dynamics under rever-
sion does not depend on the first-order nested commutator
C(f )(SLi)

2 (ζ ) in Eq. (23), which means that the dynamics un-
der reversion produced by C(f )

i,L in the decoherence function
(39) is completely reverted when t2 = κt1. Therefore, in such
reversion experiment, the decoherence function with the evo-
lution operator truncated up to the first-order commutator will
be equal to the decoherence function (39) putting t1 = 0, and
it will be equal to the function (40) putting τ = 0, so they
will be independent of the reversion time. On the other hand,
such independence of the dynamics with C(f )(SLi)

2 (ζ ) does
not occur for the asymmetric single reversion sequence of
Figure 1(a). Obtaining the decoherence function under
MREV8 using a truncated expression for Eq. (23) up to the
second-order commutator C(f )(SLi)

3 (ζ ) would involve a tough
calculation. However, the approximations and conclusions ex-
tracted from the general decoherence function form (41) will
still be valid and the result obtained in Eq. (42) will differ
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in the complex exponential function involving CL
i . This func-

tion will have a dependence with other additional eigenvalues
C

D,n
iζ and their corresponding polynomials YD,n(t, τ ). Since

that aim is out of the scope of our work, we will conserve the
decoherence function (42) for our succeeding analysis. Given
that hypotheses HypoG-I and HypoG-II will be valid in the
general case of Eq. (41) and the final form of decoherence de-
pends on a proposed distribution function of some eigenval-
ues (as we will see the in the following text), the conclusion
will be unchanged if we use the asymmetric single reversion
sequence of pulses shown in Figure 1(a) and the evolution op-
erator in Eq. (31).

In addition, it is worth to mention that the approximation
of small τ 1 can be improved by adjusting the time between
pulses and the pulse widths as small as possible. As was men-
tioned, the factor κ in Eq. (32) is equal two, thus ideally the
sequence MREV8 of Figure 1(b) will revert the spin dynam-
ics when the condition τ 2 = 2τ 1 is satisfied. The reversion of
the FID with MREV8 is carried out with the pulse sequence
in Figure 1(c). There, each block RS(i) is a sequence like that
presented in Figure 1(b). This configuration allows to set the
time between pulses as small as allowed by the experimental
apparatus, in order to minimize the effects of non-idealities
of the sequence. In this case, the time period of evolution un-
der reversion is τ = nτ c, where n is the number of MREV8-
blocks, and the FID is acquired during time t.

The observed FID corresponds to the expectation value
of the observable Iy, ensuing the reversion sequence. From
the theory presented in QD-I, which was summarized in
Sec. II A, using Eq. (29) with ρ̂ (s1)(0) = βT ω0

NS1
I(s1)

y and Ô(s1)

= I(s1)
y , and the decoherence function (42) under HypoG-I

and HypoG-II, in the “on-resonance” condition, we finally
obtain

〈̂Iy(t, τ )〉 = βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× e−i(ζ1−ζ ′
1)SzztGζ1,ζ

′
1
(t)G(rt)

ζ1,ζ
′
1
(τ ), (45)

where the values of τ are multiples of τ c.
The result of Eq. (45) is similar to the FID obtained in

Sec. III E in QD-I, with the addition that the signal is atten-
uated by a decoherent factor given by G

(rt)
ζ1,ζ

′
1
(τ ), which de-

pends on eigenvalues ζ1 and ζ ′
1 of the dipolar Hamiltonian.

Ultimately, the agreement of the experimental results with the
predictions formulated using Eq. (45) will confirm the valid-
ity of the introduced hypotheses.

In Eq. (45), the function Gζ1,ζ
′
1
(t) represents the main

decoherence process under a free evolution of the system.
This decoherence was called adiabatic quantum decoherence
(AQD) in QD-I, with a time scale shorter than the rest of the
decoherence processes and a reversible character of its dy-
namics. As was analysed in QD-I, in nematic liquid crystals
the AQD is associated with the OMDF. That distribution is
expressed as a distribution of the values of the order param-
eter Si. The distribution function associated here with such
decoherence is p

{S}
i (Si), being Si = Si − Szz and Szz

= ∫
dSiSip

{S}
i (Si). Using the random variable transformation

(RVT) theorem,39 we have that p
{S}
i (Si) ≡ p

{S}
i (Si − Szz)

(i.e., the distribution function p
{S}
i is the same that the one

given by p
{S}
i but with its statistical variable shifted in the

mean value Szz), thus the AQD function in (45) can be ex-
pressed as

G{ζ1,ζ
′
1}(t) =

∫ ∞

−∞
dS1 e−i(ζ1−ζ ′

1)S1t p
{S}
1 (S1)

= ei(ζ1−ζ ′
1)Szzt

∫ ∞

−∞
dS1 e−i(ζ1−ζ ′

1)S1t p
{S}
1 (S1).

(46)

From Eq. (46), we can see that G{ζ1,ζ
′
1}(t) is the same as the

one obtained in Sec. III C in QD-I, which exposes the relation
between the AQD function and the OMDF given by p

{S}
1 (S1).

In QD-I, we have seen that a gaussian distribution is a
suitable approximation for the OMDF in nematics, namely,

p
{S}
1 (S1) = 1√

2πσ 2
S1

e
− (S1)2

2σ2
S1 , (47)

with σS1 the standard deviation of S1 which is the same for
S1.

Finally, we can see that the distribution (47) yields a
gaussian form for the AQD function (46) as

G{ζ1,ζ
′
1}(t) = e

− 1
2 (ζ1−ζ ′

1)2σ 2
S1

t2

. (48)

By the other hand, in Eq. (45) the function G
(rt)
ζ1,ζ

′
1
(τ ) rep-

resents the decoherence function produced by the first-order
nested commutator belonging to a set of nested commutators
which conform the complete evolution operator. The dynam-
ics produced just by this decoherence function could be even-
tually reverted, by designing a particular pulse setting, but it
is impossible to revert simultaneously the dynamics of the
whole set of commutators, as was demonstrated in Sec. III
D 2 of QD-I. Therefore, such decoherence function produced
by the complete set of nested commutator is irreversible; it
was called essentially adiabatic quantum decoherence in QD-
I and it has a slower dynamics than the reversible AQD, intro-
ducing an intermediate time scale between the AQD or Liou-
villian process and the process of thermalization.

We can obtain different decay functions for G
(rt)
ζ1,ζ

′
1
(τ ) de-

pending on the form of p
{CL}
1 (CL

1 ). For instance, for a gaussian
form similar to (47), replacing S1 and σS1 by CL

1 and σCL
1
,

respectively, the decoherence function adopts the following
gaussian behaviour:

G
(rt)
ζ1,ζ

′
1
(τ ) = e

−(ζ1−ζ ′
1)2σ 2

CL
1

τ 4/[8(κ+1)2]
. (49)

By other hand, for a Lorentzian distribution

p
{CL}
1

(
CL

1

) = 1

π

δCL
1(

δCL
1

)2 + (
CL

1

)2 , (50)

it is obtained an exponential decay behaviour

G
(rt)
ζ1,ζ

′
1
(τ ) = e−|ζ1−ζ ′

1|δCL
1 τ 2/[2(κ+1)]. (51)

Finally, with the aim of analyzing the spectral properties
of the FID function under reversion, using Eq. (C4) (see Ap-
pendix C) in (45), we obtain the Fourier transform on the time
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t of the signal produced by the reversion experiment:

Ft {〈̂Iy(t, τ )〉}(ω)

= βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× 2π

|ζ ′
1 − ζ1|

p
{S}
1

(
ω − (ζ ′

1 − ζ1)Szz

ζ ′
1 − ζ1

)
G

(rt)
ζ1,ζ

′
1
(τ ). (52)

At this point, we analyze the meaning of Eq. (52). First,
we note that if in (45) we make G{ζ1,ζ

′
1}(t) = 1 and G

(rt)
ζ1,ζ

′
1
(τ )

= 1, ∀(t, τ ), the resulting reverted FID is that of a closed sys-
tem. Therefore, the Fourier transform of such signal will be a
superposition of Dirac deltas shifted at the spectrum charac-
teristic frequencies (ζ ′

1 − ζ1)Szz, like (C1). By other hand, if
in (45) and (52) we just assumed G

(rt)
ζ1,ζ

′
1
(τ ) = 1, ∀τ , we would

obtain the resulting signal of a FID under the AQD dynamics,
which is the same result obtained in Sec. III E of QD-I.

The AQD produces the line-shape of the spectrum. Such
spectrum is obtained as a superposition of copies of the
OMDF shifted to the frequencies (ζ ′

1 − ζ1)Szz and scaled by
the factor |ζ ′

1 − ζ1|, as can be seen in (52). This scaling effect
of |ζ ′

1 − ζ1| produces the eigen-selection effect in the time do-
main, due to which the bigger the value of |ζ ′

1 − ζ1| is, the
faster the decay of the decoherence function will be. Such ef-
fect is reflected in the spectrum making that for higher fre-
quencies (ζ ′

1 − ζ1)Szz the corresponding copy of the OMDF
is less intense and wider.

Now we gained more insight to understand the resulting
signal under reversion in Eqs. (45) and (52). We can see that
the spectrum (52) resembles the one obtained for the AQD in
QD-I, but in the present case there is a modulation produced
by decoherence during the reversion dynamics. Such decoher-
ence under reversion produces faster decays for higher vales
of |ζ ′

1 − ζ1|, as can be seen from Eqs. (49) and (51). There-
fore, if we have different spectra for different values of τ we
should see that the higher the frequency (ζ ′

1 − ζ1)Szz of the
spectrum line is, the faster the decay in τ will be, provoking
a kind of compression of the spectrum. This feature of the
dynamics under reversion will provide us a clear method to
detect the effects of the eigen-selectivity due to the coupling
of the system with the environment.

As a final comment, from Eq. (44) and Appendix D, we
can observe that the decoherence function under reversion is
the Fourier transform in the variable CL

i of the distribution

function p
{CL}
i , valuated in

−(ζi − ζ ′
i )τ

2/[2(κ + 1)],

this is

G
(rt)
{ζi ,ζ

′
i }(τ ) = [

FCL
i

{
p

{CL}
i

(
CL

i

)}
(α)

]
α=− (ζ

i
−ζ ′

i
)τ2

2(κ+1)

=
[∫ ∞

−∞
dCL

i e−iαCL
i p

{CL}
i

(
CL

i

)]
α=− (ζ

i
−ζ ′

i
)τ2

2(κ+1)

.

(53)

The expressions (46) and (53) show the close relation existing
between the decoherence process and the distribution function
of the variables associated with the environment.

The numerical calculations of Eqs. (45) and (52) are
shown in Figures 2 and 4 for 5CB (4′-pentyl-4-biphenyl-
carbonitrile) and PAAd6, respectively, where a frequency se-
lective gaussian decay was proposed for decoherence along
t and τ time scales. In the case of 5CB, we used the ten-
spin model (core protons plus the α-CH2 proton pair) from
Ref. 40 because of the high effort that would involve the in-
clusion of more spins, which is beyond of the current com-
putational facilities. For PAAd6, the eight-spin model pre-
sented in QD-I was used. In Figure 2(a) it can be seen the
calculated FID signals for different values of τ in 5CB, while
Figure 2(b) shows the corresponding amplitude spectra. The
frontal view of the spectra in Figure 2(c) shows that the faster
decays correspond to the components of higher frequency.

FIG. 2. Calculation of the FID signals under spin reversion dynamics, us-
ing MREV8 pulse blocks, for the nematic 5CB molecule in the resonance
condition. Decoherence is represented with gaussian profiles in t and τ . Pa-
rameters: Szz = 0.5403, σ t = 0.07 (standard deviation in t), and σ τ = 0.04
(standard deviation in τ ). (a) FID signals, depending on time t, as a function
of the reversion time τ . (b) Amplitude spectra for the results in (a). (c) Frontal
detail of the spectra shown in (b). (d) Spectra of (c) normalized to compare
the evolution of their frequency components (for clarity only the spectra for
the shorter τ values are shown). It is observed in (d) the different decay rates
of a set of spectral lines close to 5.65 kHz and 8.50 kHz as well as the spectral
compression which are evidences of the eigen-selectivity in the decoherence
process.
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FIG. 3. Calculated evolution of the normalized amplitude as a function of
the reversion time τ for the spectral lines at 5.65 kHz and 8.50 kHz of the
spectra shown in Figures 2(b) and 2(c) for the nematic 5CB.

This feature is more evident for the normalized spectra of
Figure 2(d), where it can be appreciated the compression of
the spectrum for increasing values of τ , in correspondence
with the smoothing of the signals as seen in Figure 2(a).

The details of the calculated variation of the normalized
amplitude of the spectrum lines of frequencies 5.65 kHz and
8.50 kHz are shown in Figure 3, where it can be appreciated
the higher decay rate of the high frequency component. The
calculations presented in Figure 2 show the effects on the dy-
namics introduced by the eigen-selectivity of the decoherence
process. The choice of the 5CB sample for demonstrating the
effects of the eigen-selectivity was motivated by the clear sep-
aration existing between the spectral peaks of the two groups
of spectral lines around 5.65 kHz and 8.50 kHz found in
the numerical calculation, corresponding to the strong dipolar
couplings of the molecular core and the α-pair, respectively.
On the contrary, the spectrum of PAAd6 does not exhibit a
clear distinction among the frequency lines, since the strong
dipolar couplings have similar values. However, a compres-
sion of the spectra as a function of the reversal time τ similar
to that found in 5CB is still visible in this compound, as can
be seen in Figures 4(a) and 4(b), because of which it is used
to show that this effect is part of the evidence of the eigen-
selectivity of the decoherence process. Notice that if deco-
herence did not present eigen-selectivity during the reversion
period, all the spectral lines would decay with the same rate
and therefore the spectral compression would not occur.

Finally, it is worth to remark that the occurrence of deco-
herent factors is a consequence of incorporating the “mechan-
ical” variables into the description of the dynamics within a
full-quantum view, and that the eigen-selectivity is a direct
consequence of this fact. As will be shown in Sec. II D, the
relevant experimental errors do not entail eigen-selectivity.
The experimental measurements corresponding to the experi-
ments proposed are presented in Sec. II C.

C. Measurements

In this section we present the experimental results
obtained by application of the refocusing experiment of

FIG. 4. Calculation of the FID signals under spin reversion dynamics, using
MREV8 pulse blocks, for the nematic PAAd6 molecule in the resonance con-
dition. Decoherence is represented with gaussian profiles in t and τ . Parame-
ters: Szz = 0.53, σ t = 0.06 (standard deviation in t), and σ τ = 0.015 (standard
deviation in τ ). (a) Amplitude spectra for the calculated FID’s. (b) Spectra of
(a) normalized to compare the evolution of their frequency components (for
clarity only the spectra for the shorter τ values are shown). It is observed in
(b) the spectral compression which is evidence of the eigen-selectivity in the
decoherence process.

Figure 1(c) in the FID dynamics, which was discussed in de-
tail in Sec. II B.

The experiments were carried out in a home-built spec-
trometer, based on a magnet of a Varian EM360, of 60 MHz
for protons, with the probe adapted for application of pulsed
radiofrequency. The electronic setup allows the complete con-
trol of the phase of the pulses, with a precision of 0.022◦,
a time step of 40 ns, and a minimum configurable time of
240 ns. The rf power used permits π /2 pulses of about 6.5 μs.
The homogeneity of the magnetic field is controlled with
shimming coils, with a minimum half width of 470 Hz ap-
proximately, for the spectral lines (using a model of gaussian
line-form for each spectral line). The maximum dead time in
the signal acquisition is about 18 μs. The temperature can be
set between 25 ◦C and 150 ◦C, with a medium accuracy of
±1 ◦C and a stability of ±0.1 ◦C.

We made experiments in samples of the nematic liquid
crystals 5CB, PAAd6, and PAA, and the solid adamantane.
The solid sample was included for comparison, since this sys-
tem contains an unlimited number of interacting spins, in con-
trast with the finite “clusters” comprising the protons of LC
molecules. Degradation of spin coherence could also occur in
a solid induced by non-spin degrees of freedom, for instance
due to lattice phonons. However, this point is out of scope of
the present work.

With the purpose of reference for subsequent discus-
sion, in Figure 5 we show the measured FID’s with the
corresponding spectra, for all the samples studied. These sig-
nals are the result of eight acquisitions, except in PAAd6,
where the signal was acquired 208 times. PAAd6 and PAA
molecules differ in that in the first the methyl groups are re-
placed by CD3 groups. In adamantane, while the molecules
as a whole are fixed on the solid network, they undergo rapid
motions, due to which the crystalline spin system can be ef-
fectively represented by a lattice of spins 1/2.41

It should be noted that the experimental spectrum of 5CB
in Figure 5(a2) is different from the spectrum numerically
calculated with the ten-spin model used in Sec. II B. It can
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FIG. 5. Molecular sketch (inner detail in the figures), FID evolution (index
1 in the figures) and the FID spectrum (index 2 in the figures) measured for
nematic 5CB (a1) and (a2) at room temperature (namely, T = 27 ◦C), PAAd6
(b1) and (b2) at T = 115 ◦C, PAA (c1) and (c2) at T = 110◦C, and solid
adamantane (d1) and (d2).

be seen that in the measured spectrum the higher amplitude
peaks are shifted to higher frequencies, while in the calculated
spectrum the situation is the opposite. This is so because the
ten-spin calculation does not include the remaining CH2 pro-
ton pairs of the alkyl chain, which contribute to the high fre-
quency peak. However, these discrepancies do not invalid the
usefulness of the ten-spin model for appreciating the effects
on the spin dynamics of the many-body quantum character of
the spin interactions, like the eigen-selectivity, as was shown
in Sec. II B.

The measurements in PAAd6 and PAA were made at tem-
peratures T = 115 ◦C and T = 110 ◦C, respectively. In the re-
maining cases, the experiments were carried out at room tem-
perature, namely, T = 27 ◦C. The MREV8 sequence shown
in Figure 1(b) was set up to mitigate the effects of the fi-
nite width of the pulses. The total time of each sequence
is τc = 2(2τ2 + 2τ1 + 4tw),33 then τ1 = τc/12 − tw and τ2

= τc/6 − tw. For a pulse of π /2 with a width of tw = 6.56 μs
and a minimum setting time of τ1 = 1.6 μs, we have τc

= 12(τ1 + tw) = 97.92 μs and τ2 = 9.76 μs. By comparing

FIG. 6. Experimental results of the FID signals under spin reversion dynam-
ics, using MREV8 pulse blocks, for the nematic 5CB at room temperature
(namely, T = 27 ◦C) in the resonance condition. (a) Measured signals for
the FID experiments, depending on the time t, as a function of the reversion
time τ . (b) Amplitude spectra for the measurements shown in (a). (c) Frontal
detail of the spectra shown in (b). (d) Spectra of (c) normalized to compare
the evolution of their frequency components (for clarity only the spectra for
the shorter τ values are shown). In the center-right box is detailed the time τ

for each spectrum.

the time scale of the FID’s shown in Figure 5, it can be antici-
pated that the evolution under the dipolar Hamiltonian during
the pulse duration will not have relevance in the experimental
results.

In Figure 6 we present experimental results, correspond-
ing to the refocusing experiments discussed in Sec. II B ob-
tained in 5CB under the sequence shown in Figure 1(c). From
the spectral evolution of the “spin-dynamics-reversed” FID’s
of Figure 6(a), given in Figure 6(b) or in more detail in
Figures 6(c) and 6(d), it can be seen how the spin dy-
namics is affected by the eigen-selection process during the
reversion (in the last figure the spectra as a function of τ

are normalized to facilitate the comparison). This becomes
more evident when comparing the amplitude variation of two
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FIG. 7. Experimental results of the FID signals under spin reversion dynam-
ics, using MREV8 pulse blocks, in the resonance condition. The figures with
index 1 show the amplitude spectra for the FID measurements and the ones
with index 2 show the measured FID spectra, which are normalized to com-
pare the evolution of their frequency components (for clarity only the spectra
for the shorter τ values are shown). (a1) and (a2) PAAd6 at T=115◦C; (b1)
and (b2) PAA at T=110 ◦C; and (c1) and (c2) solid adamantane.

groups of spectral lines, those around the frequencies 5.55
kHz and 10.60 kHz, as shown in Figure 8(a). There it can
be seen that the peak at 10.60 kHz presents a higher decay
rate for all τ . It can be appreciated in Figure 6(c) how the two
peaks match their amplitudes at τ ≈ 361.4 μs, reverting sub-
sequently their initial amplitude relation. It is worth to note
that in the spectra the frequencies lines close to 0 kHz are af-
fected by instrumental artifacts like noise in the baseline of
the signals. Therefore, the variations of such lines should not
be given any physical meaning.

The results of the same experiment performed in nemat-
ics PAAd6 and PAA, and solid adamantane, are shown in
Figure 7. In PAAd6, in agreement with the results of the
numerical calculation shown in Sec. II B, it is observed a
narrowing of the spectrum, in consistency with a more pro-

FIG. 8. Measured evolution of the normalized amplitude as a function of the
reversion time τ for different spectral lines of the FID spectra. (a) Spectral
lines at 5.55 kHz and 10.60 kHz for the spectra shown in Figures 6(b) and
6(c) for nematic 5CB at room temperature (namely, T = 27 ◦C). (b) Spectral
lines at 1.60 kHz and 7.35 kHz for the spectra shown in Figure 7(b1) for the
PAA at T = 110 ◦C.

nounced decay of the higher frequencies lines. By other hand,
in the PAA spectrum low and high frequency groups of lines
are resolved. Figure 8(b) shows the detail of the normalized
decay of two lines at 1.60 kHz and 7.35 kHz. It should be no-
ticed that the decay rate depends on the line position in the fre-
quency spectrum, and the “bell” form associated with the ho-
mogeneous broadening of every line (the lineshape produced
by AQD) is equally affected by decoherence or non-ideal ef-
fects like static field inhomogeneity. Due to this, for general
cases the time evolution of the different parts of the spectrum
will be masked by the superposition of broadened lines, pre-
venting the experimental resolution of the decay rates of dif-
ferent parts of the spectrum. Therefore, it can be expected that
eigen-selectivity would be more easily observed in samples
with spectrum having groups of lines with certain degree of
resolution, like nematics 5CB and PAA.

The experiment sketched in Figure 1(c) can be modified
by changing the MREV8-train by a single block, where the
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FIG. 9. Experimental results of the FID signals under spin reversion dynam-
ics, using a single MREV8 pulse sequence with a continuous variation of its
setting times, for nematic 5CB at room temperature (namely, T = 27 ◦C) in
the resonance condition. (a) Measured signals for the FID experiments, de-
pending on the time t, as a function of the reversion time τ . (b) Amplitude
spectra for the measurements shown in (a). (c) Frontal detail of the spectra
shown in (b). (d) Spectra of (c) normalized to compare the evolution of their
frequency components (for clarity only the spectra for the shorter τ values
are shown).

time parameter τ 1 is varied independently, and the value of
τ 2 is defined as to obtain the maximum signal, being τ 2 > τ 1.
For these values of τ 2 as a function of τ 1 the slope of a straight
line is fitted, whose ideal value is two. By using this depen-
dence, the reversion experiment can be done by using a single
block, in such a way to minimize non-idealities present in the
pulse setting of the experiments. In this experiment, the rever-
sion time τ is a linear function of τ 1. The advantage of this
method is that it permits a continuous variation of τ 1 yield-
ing a smooth profile for the signal amplitude in the reversion
experiments. On the other hand, long-time settings in such
experiment can introduce contributions from the non-secular
dipolar Hamiltonian on the dynamics (see Sec. II in the sup-
plementary material28 for details about the influence of the
non-secular dipolar part on the MREV8 reversion dynamics).

The results of the reversion experiment using the con-
tinuous MREV8 method in 5CB are shown in Figure 9. In

FIG. 10. Measured evolution of the normalized amplitude as a function of
the reversion time τ for the spectral lines at 5.60 kHz and 8.35 kHz for the
spectra shown in Figures 9(b) and 9(c) for the nematic 5CB at room tem-
perature (namely, T = 27 ◦C). It can be seen the eigen-selectivity where the
higher the frequency of the line is, the faster its decay will be. The continu-
ous variation of the setting time allows to see clearly the bell-like form for
the decay of the spectral lines.

Figure 10 is shown the normalized variation with the rever-
sion time of the amplitude of two peaks at distinct frequen-
cies, corresponding to the measurement of Figure 9. There
it can be appreciated the frequency selective decay. Due to
the finite pulse widths, the initial measured amplitudes cor-
respond to a time τ significantly shifted from zero. For these
reversion times the frequency selective decay is noticeable,
accordingly the first spectrum in Figure 9 already presents a
larger decay of the higher frequency. This explains the differ-
ence with the spectra shown in Figure 6. Except for this last
detail, the obtained results show the same features than the
reversion experiments using blocks of the MREV8 sequence.
Similar results were obtained for the other compounds studied
in this work.

By means of the continuous MREV8 experiment it is
possible to obtain a detail of the maximum amplitude of
the reversed FID’s, as a function of the reversion time τ . In
Figure 11, the results obtained by averaging data near the
maximum of each reversed FID are shown, where the signal to
noise ratio is larger. Besides, the plots were normalized with
respect to the first FID obtained in each experiment. We added
three gaussian profiles with different values of standard devia-
tion (σ = 350 μs, 580 μs, 800 μs), used as a guide to the eye.
Since the first FID signal already presents a significant atten-
uation, the gaussian curves have a value greater than one for
τ = 0. It can be seen that the decay time is longer than the
characteristic decay time of the FID for every compound (see
Figure 5). This is consistent with the theoretical approach pro-
posed in QD-I, where it is considered that the spin dynamics
during the reversion period is governed by a different mech-
anism than the one which control the spin dynamics during
the FID evolution. This quantum process is characterized by
a longer time scale, since it is associated with higher order
terms of a perturbative treatment. Besides, we can see that
for times shorter than 780 μs the PAAd6 (with 8 spins per
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FIG. 11. Experimental results of the normalized evolution of the maxi-
mum of the FID signals under spin reversion dynamics, using a single
MREV8 pulse sequence with a continuous variation of its setting times, for
adamantane and 5CB at room temperature (namely, T = 27 ◦C), PAAd6 at
T = 115 ◦C, and PAA at T = 110 ◦C. Three gaussian decays with different
standard deviations, σ , are plotted for comparison with the measurements.

molecule) presents a similar decay behaviour that the PAA
(with 14 spins per molecule) and the 5CB (with 19 spins per
molecule) presents a similar decay behaviour that the adaman-
tane (a solid array of spins) for all τ time. These results reflect
that decoherence is not associated with the nature of the spins
as a closed system.

It is also observed in Figure 11 that the decay in PAAd6

is more similar to that of PAA than to the one of 5CB. The
fact of observing similar responses to decoherence for these
two samples is consistent with decoherence being controlled
by the coupling of the spin system to external degrees of free-
dom. For values of τ greater than 780 μs, decoherence in PAA
turns stronger, which could be indicating the occurrence of an
additional decoherent mechanism associated with the protons
of the methyl groups. However, because of the low signal to
noise ratio of PAAd6 and other sources of error, which will
be discussed in Sec. II D, more experiments are necessary to
confirm this assertion.

It is worth to note that, using a single MREV8 pulse se-
quence with a continuous variation of time settings, for long
τ values the decay can be affected by the influence of the non-
secular dipolar Hamiltonian part in the dynamics under rever-
sion (see Sec. II in the supplementary material28). However,
such experiment is able to show the intermediate time scale of
decoherence as it is the aim in this work. For a more exactly
measurement of the decoherence time other techniques can
be used, like the MS,13, 23, 33–37 when they are adequate due
to constraints in the experimental setting like the duration of
the rf pulses. In particular, using a combined technique of MS
with z-rotational decoupling, namely, MSHOT-3,37 would im-
prove the performance of the reversion sequence, which could
be particularly useful for extending the study to solids where
the intensity of the dipolar coupling is higher than in LC. With
this technique, it would be possible to eliminate higher order
terms (up to fifth order) in the dipolar decoupling than that
using MREV8 (up to the third).

Summarizing, from the results presented in this section,
we have the following conclusions:

1. the time scale of the attenuation of the reversed FID sig-
nal in MREV8 experiments occurs in a longer time scale
than the one of the FID evolution,

2. the high-frequency spectral components decay faster,
showing an eigen-selection process,

in total agreement with the theory presented in QD-I. Be-
sides, such intermediate time scale for decoherence, be-
tween the FID evolution and the thermalization process time
scales, is consistent with the hypothesis about the existence of
dynamics with different time scales used in the theoretical ap-
proach of this work and QD-I.

D. Non-ideal behaviours and approximations
in the experiments

The MREV8 sequence shown in Figure 1(b) has been op-
timized by adjusting the time parameters τ 1 and τ 2, to miti-
gate the effects of the finite width tw of the pulses, as was
commented in Sec. II C. The shortest interval τ 1 between
pulses was fixed in 1.6 μs. It is worth to note that in a time
of 6.56 μs, corresponding with a π /2 pulse in our experiment,
the free evolution dynamics produced by the dipolar interac-
tion is not significant as can be seen from the FID’s shown in
Figure 5.

The non-ideality arising in the control of the reversion
parameter κ would come from deviations from the exact
value κ = 2 due to misadjustments of the π /2 pulses (see
Sec. II B for details about this reversion parameter). In a sim-
ilar fashion, a correct setting of the π /2 pulses with κ = 2
could be affected by an incorrect adjustment of the time τ 2

(i.e., with τ 2 �= κτ 1), causing an imperfect reversion of the
spin dynamics. These errors could introduce an additional
dynamics of the essentially isolated system,11 generated by
the molecular dipolar Hamiltonian, producing perturbations
of the signals and their spectra as a function of the reversion
parameter τ .

With the aim of estimating the effects of experimental
misadjustments, in the following we will obtain several ana-
lytical expressions for different kinds of errors in the rever-
sion sequence shown in Figure 1(c) using MREV8 blocks of
pulses. We will consider the spin system as a closed system to
study the possibility of obtaining some eigen-selection effect
in such case, which could overlap with the effects of the cou-
pling with the environment. We relegate to Sec. II in the sup-
plementary material28 the complete analytical demonstration,
as well as the numerical calculation of the signal expressions
which will be used in this section.

We introduce the error ε in the setting of the time un-
der the reversion dynamics by writing τ 2 = (κ + ε) τ 1. It is
worth to note that such error takes account of misadjustments
in the time τ 2 as well as deviations from a perfect setting of
the π /2 pulses (see Sec. II in the supplementary material28 for
details about the equivalence between τ 2 time misadjustments
and π /2 pulses misadjustments). Therefore, we have t2 = (κ
+ ε) t1 and the total reversion time τ = (κ + 1 + ε) t1. Using
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such erroneous setting of the t2 time, we obtain for the ex-
pectation value of Îy corresponding to the closed spin system,
under “on-resonance” condition, the following result:

〈̂Iy(t, τ )ε〉 = βT ω0N

NS1

trs1

{
I(s1)

y e−iĤ(s1)
S1 t

× eiĤ(s1)
S1

ε/κ

κ+1+ε
τ I(s1)

y e−iĤ(s1)
S1

ε/κ

κ+1+ε
τ eiĤ(s1)

S1 t
}

� βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× e
−i(ζ1−ζ ′

1)Szz

(
t− ε/κ

κ+1 τ
)
, (54)

where we used the approximation ε/κ � 1 which implies t1
� τ /(κ + 1). The Fourier transform of (54) is

Ft {〈̂Iy(t, τ )ε〉}(ω)

= 2πβT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

|〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉|2

× δ[ω − (ζ ′
1 − ζ1)Szz]e

i(ζ1−ζ ′
1)Szz

ε/κ

κ+1 τ . (55)

The expression in Eq. (55), for the Fourier transform of the
FID signal for a closed spin system, does not present a de-
cay with some eigen-selection effect, but it shows an os-
cillatory behaviour of each spectral line proportional to the
product of the eigenvalue difference ζ1 − ζ ′

1 with the error
factor ε/κ .

Another interesting case to consider, is when the FID sig-
nal is thought as produced by the different signals coming
from a distributed molecular orientation of the main molec-
ular axis of the LC system.42 In such a case, with the same
misadjustment as in Eq. (54), we have for the FID

〈̂Iy(t, τ )ε〉 = βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

×
∫ ∞

−∞
dS1 e−i(ζ1−ζ ′

1)S1(t− ε/κ

κ+1 τ ) p
{S}
1 (S1)

= βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× e−i(ζ1−ζ ′
1)Szz(t− ε/κ

κ+1 τ )e
− 1

2 (ζ1−ζ ′
1)2σ 2

S1
(t− ε/κ

κ+1 τ )2

, (56)

where p
{S}
1 (S1) is the OMDF (see Sec. II B). The expres-

sion (56) is the classical representation of the AQD seen in
Sec. II B. Since the dynamics produced by the error factor
ε/κ under the reversion time τ is very slow in comparison
with the one produced under the free-evolution time t, we can
write

〈̂Iy(t, τ )ε〉 � βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× e
−i(ζ1−ζ ′

1)Szz

(
t− ε/κ

κ+1 τ
)
e
− 1

2 (ζ1−ζ ′
1)2σ 2

S1
[t2+( ε/κ

κ+1 τ )2]
.

(57)

The Fourier transform of (57) is

Ft {〈̂Iy(t, τ )ε〉}(ω)

� βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× 2π

|ζ ′
1 − ζ1|

1√
2πσ 2

S1

e
− 1

2 [
ω−(ζ ′

1−ζ1)Szz

(ζ ′
1−ζ1)σS1

]2

× ei(ζ1−ζ ′
1)Szz

ε/κ

κ+1 τ e
− 1

2 (ζ1−ζ ′
1)2σ 2

S1
( ε/κ

κ+1 τ )2

. (58)

We can see from Eq. (58) that there is a decay factor with
eigen-selection effect for each spectral line, but it is masked
by an oscillatory behaviour of each frequency line, instead of
the monotonous decay that is experimentally observed (see
for instance Figures 6 and 8). Besides, such predicted decay
is reversible and it would, in principle, be possible to increase
the decay time by correcting the misadjustment represented
by the factor ε/κ , since the dynamics is very susceptible to
changes of ε. The factor ε/κ

κ+1 is acting like a scale factor in
the reversion time τ for the decoherence function as well as
for the oscillation function. Therefore, changing this factor si-
multaneously modifies the time behaviours of both functions
in such way that if a decay of the signal is observed, the os-
cillations have to be observed as well. Indeed, this effect is
not observed in the experimental measurements, where the
correction of the misadjustments produces the extinction of
the oscillatory behaviour under the reversion dynamics pre-
senting an observable decay in the signals in the intermediate
time scale.

If we see the signal under the reversion time τ obtained
for the time t = 0 in Eq. (57), we have

〈̂Iy(0, τ )ε〉 = βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

∣∣〈ζ1s1|I(s1)
y |ζ ′

1s
′
1〉

∣∣2

× ei(ζ1−ζ ′
1)Szz

ε/κ

κ+1 τ e
− 1

2 (ζ1−ζ ′
1)2σ 2

S1

(
ε/κ

κ+1 τ
)2

. (59)

The expression (59) has the form of a FID but with a slower
time dependence. Such behaviour under reversion depends on
the time ε/κ

κ+1τ instead of the time t. The dynamics represented
by Eq. (59) is reversible and the oscillations in the signal are
unavoidable. Clearly, this is not a feature of the experiments,
as was mentioned.

If the setting of the π /2 pulses were very erroneous or
if the dynamics under reversion were strongly influenced by
the non-secular dipolar Hamiltonian (for instance, when the
time τ 1 is not small enough to neglect the dynamics produced
by the non-secular dipolar Hamiltonian), the signal under
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reversion could be written as

〈̂Iy(t, τ )‡〉 = βT ω0N

NS1

trs1

{
I(s1)

y e−iĤ(s1)
S1 t

× e−iĤ‡(s1)
S1 τ I(s1)

y eiĤ‡(s1)
S1 τ eiĤ(s1)

S1 t
}

= βT ω0N

NS1

∑
ζ1s1,ζ

′
1s

′
1

〈ζ ′
1s

′
1|I(s1)

y |ζ1s1〉e−i(ζ1−ζ ′
1)Szzt

×
∑
α1,α

′
1

〈ζ1s1|α1〉〈α1|I(s1)
y |α′

1〉〈α′
1|ζ ′

1s
′
1〉

× e−i(α1−α′
1)τ , (60)

where Ĥ‡(s1)
S1 is the resulting Hamiltonian under reversion,

which is different of Ĥ(s1)
S1 (see Sec. II in the supplementary

material28 for details of the definition of Ĥ‡(s1)
S1 ). In Eq. (60)

the eigenbase {| α1 〉} of the Hamiltonian Ĥ‡(s1)
S1 is defined,

where Ĥ‡(s1)
S1 |α1〉 = α1|α1〉. The Fourier transform of (60) is

Ft {〈̂Iy(t, τ )‡〉}(ω)

= 2πβT ω0N

NS1

×
∑

ζ1s1,ζ
′
1s

′
1

〈ζ ′
1s

′
1|I(s1)

y |ζ1s1〉 δ[ω − (ζ ′
1 − ζ1)Szz]

×
∑
α1,α

′
1

〈ζ1s1|α1〉〈α1|I(s1)
y |α′

1〉〈α′
1|ζ ′

1s
′
1〉

× e−i(α1−α′
1)τ , (61)

where we can see that the decay corresponding to the spec-
tral lines does not present any eigen-selection effect. These
effects of misadjustments in the reversion time, with the spin
system considered as a closed system, were numerically sim-
ulated and the results are shown in Sec. II in the supplemen-
tary material,28 where we obtain numerical conclusions which
coincide with the analytical analysis.

Finally, to contrast with the commented analytical results
about misadjustments in the experimental setting in the closed
spin system, we derived the analytical signal produced by the
same reversion experiment affected by an erroneous setting of
the reversion time, for the open quantum system conformed
by the protons coupled to the environment. Using the time
setting t2 = (κ + ε) t1 in the evolution operator (35), we obtain
the decoherence function

G{ζ,ζ ′
i }(t, τ )ε =

∫
dSi e−i(ζi−ζ ′

i )SiYS (t,τ )ε

×
∫

dCL
i e−i(ζi−ζ ′

i )CL
i YL(t,τ )ε

×
∫

dCSL
iζ e−i(ζi−ζ ′

i )CSL
iζ YSL(t,τ )ε

×pi

(
Si, C

L
i , CSL

iζ

)
, (62)

instead of the Eq. (40), where we have used the same consid-
erations involved in Eq. (40). In Eq. (62), we defined

YS(t, τ )ε = t − ε/κ

κ + 1 + ε
τ, (63a)

YL(t, τ )ε = 1

2

{
(t + τ )2 − [1 + (κ + 1 + ε)−1]τ 2

− [(κ + 1 + ε)−1 + (κ + 1 + ε)−2]
ε

κ
τ 2

}
,

(63b)

YSL(t, τ )ε = 1

2

(
t − ε/κ

κ + 1 + ε
τ

)2

. (63c)

Under the approximation in the dynamics of
∫∫∫ ∏

D,n{·}t=0,
used to obtain the well approximated decoherence function
shown in Eq. (42), and with ε/κ � 1, we can write (62) as

G{ζ,ζ ′
i }(t, τ )ε �

∫
dSi e

−i(ζi−ζ ′
i )Si

(
t− ε/κ

κ+1 τ
)

×
∫

dCL
i e

i(ζi−ζ ′
i )CL

i
τ2

2(κ+1)

[
1+( κ+2

κ+1 ) ε
κ

]

×
∫

dCSL
iζ e

−i(ζi−ζ ′
i )CSL

iζ
1
2

(
ε/κ

κ+1 τ
)2

×pi

(
Si, C

L
i , CSL

iζ

)
. (64)

The decoherence function (64), which is influenced by mis-
adjustments of the reversion time t2, will affect the expecta-
tion value of Îy as can be seen in Eq. (29). We can see from
Eq. (64) that the decays produced by the integration of the
complex exponential function under the total reversion time
τ can be compensated excepting for the dynamics under the
eigenvalue CL

i . Such decays present the eigen-selection effect
and the oscillations in the signals under the reversion time
τ , due to the misadjustment of t2, can be cancelled. It can
also be seen that the decays associated to the eigenvalues Si

and CSL
iζ can be reverted but the decay due to CL

i will never
be reverted. Such non-reverted decay constitutes an envelope
which constrains the signal as a function of the reversion time
τ giving it a bell-like shape, as we will show below. By mak-
ing ε = 0 in Eq. (64) we recover Eq. (42), as expected. In
Figure 12(a) we show the effect mentioned above for the re-
version experiment in 5CB, where in Figure 12(b) it can be
seen the variations of the amplitudes of the pseudo-FID, ob-
tained extracting the mean values of the amplitudes of the FID
around t = 0, introduced by the error in κ . By comparing Fig-
ures 12 and 6, it can be noticed that in Figure 6(a) the am-
plitudes decay monotonously, indicating that the error in κ

has been satisfactorily mitigated. This dynamics induced by
experimental mismatches cannot produce a definitive signal
decay, because of the small number of spin degrees of free-
dom. The latter is true for any error in the pulse configura-
tion. In practice, this effect can be attenuated by varying the
time between the two WHH-4 blocks comprising the MREV8
sequence (see Figure 1(b)) until the oscillations of the ampli-
tudes as a function of τ disappear. The results shown in Fig-
ures 6 and 7 were obtained with this procedure.



154901-18 H. H. Segnorile and R. C. Zamar J. Chem. Phys. 139, 154901 (2013)

FIG. 12. Experimental results with a misadjustment in the reversion param-
eter κ of the FID signals under spin reversion dynamics, using MREV8 pulse
blocks, in the resonance condition for nematic 5CB at room temperature
(namely, T = 27 ◦C). (a) Measured signals for the FID experiments, de-
pending on the time t, as a function of the reversion time τ . (b) Pseudo-FID
obtained for the evolutions in τ of the FID-signal values in (a) at t = 18 μs.
Such pseudo-FID presents a signal form similar to the FID signal, but with
lower characteristic frequencies.

The observed signal attenuation might be associ-
ated with several causes besides the essentially adiabatic
decoherence,11 like fluctuations of the spin-spin interactions
due to thermal molecular motions43 or even experimental non-
idealities like inhomogeneity of the static and the rf magnetic
fields. In the work of Ref. 13, the experimental sources of er-
ror in the MS reversion experiment were carefully checked by
studying the effect of the sequence on the spin system in the
isotropic phase of liquid crystal 5CB. Combination of the MS
sequence and a π pulse to reverse the static field inhomogene-
ity yielded the same response than the usual Hahn-echo two
pulse sequence (T2 = 70 ms). This also showed that the time
scale of the decay produced by thermal fluctuations is much
greater than that of the MS experiment in the nematic phase.

In the present work, we studied analytically and exper-
imentally the influence of the field inhomogeneity in the
FID dynamics and the reversion dynamics performing ex-
periments on isotropic 5CB (see Sec. I in the supplementary

material28 for details about such experiment). The experimen-
tal results allowed us to conclude that the dynamics produced
by the field inhomogeneity has a time scale longer than that of
decoherence and it does not present a behaviour with eigen-
selectivity. Besides, it is worth to mention that MREV8 ex-
periments combined with π pulses were carried out by the
authors in 5CB in the isotropic phase where an exponential
decay was also obtained with a T2 very similar to the obtained
in 5CB in Ref. 13. On the other hand, the homogeneity of the
rf field was optimized by using a low coil filling factor and
the signals obtained from samples with different sizes do not
present any different behaviour between them.

These observations give support to the statement that
while “bulk” effects like inhomogeneity of the rf pulse and
thermal fluctuations of dipole-dipole interaction could even-
tually perturb the free spin dynamics, their influence is
irrelevant in the intermediate time scale of the reversion
experiments. Therefore, the observed decay cannot be asso-
ciated with experimental non-idealities, but it should be as-
signed to the irreversible spin dynamics induced by quantum
decoherence, whose fingerprint is the eigen-selectivity.

Summarizing, even when the observed signals are af-
fected by magnetic field inhomogeneities and intermolecular
dipole interactions, the contribution of the quantum molecu-
lar mechanical dynamics is more important along the different
time scales.

III. DISCUSSION AND CONCLUSIONS

In this work, we studied the spin dynamics which charac-
terizes the irreversible decoherence of a finite quantum inter-
acting spin system coupled with an infinite quantum environ-
ment. We experimentally detected in nematic liquid crystals
the salient characteristics of the spin dynamics predicted by
a full theory which considers the spins as an open quantum
system, namely, eigen-selectivity, spectral compression, and
irreversible decoherence under refocusing of the dipolar spin
interactions.

The experiments were interpreted in the context of the
theory presented in the work of Ref. 11, under the main as-
sumption that irreversible decoherence occurs well before that
thermal fluctuations play any significant role, and long after
the dephasing by quantum interference and reversible adia-
batic decoherence. This hypothesis is supported both by our
experiments and the work of Ref. 13, where it was shown that
irreversible decoherence, which cannot be associated with
thermalization (neither adiabatic nor nonadiabatic), occurs in
an intermediate time scale. Besides, the accurate description
achieved in Ref. 11 of the time domain FID signal by includ-
ing quantum interference and reversible adiabatic decoher-
ence, allowed us to show that the time scale characterizing the
Liouvillian dynamics and such reversible decoherence (which
can be interpreted semiclassically) is much shorter than the
time scale of the irreversible quantum decoherence.

The analytical-numerical treatment of Sec. II B allowed
us to compare the theoretical expressions derived from the
proposed theory, with the experiments. By introducing de-
coherence functions with gaussian decay profiles, in the
free-evolution and reversion dynamics, the effect of the
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environment was included. The calculations were performed
on a 10-spin model for 5CB40 and on the 8-spin model of
PAAd6 presented in QD-I.11 The results of the calculations
are shown in Sec. II B and the measurements are shown in
Sec. II C. By using reversion experiments we confirmed the
occurrence of the intermediate time scale and the characteris-
tic behaviour of the irreversible decoherence, and comparison
of the analytical FID signals and their spectra under reversion
dynamics with the experimental ones confirmed the validity
of the theoretical approaches presented in QD-I11 and in this
work, beyond the experimental non-idealities.

We presented a detailed analysis of the experimental
causes that could affect our measurements, in order to identify
their characteristic time scales. In Sec. I of the supplementary
material,28 we analysed the effect of the inhomogeneities of
the static magnetic field. We conclude that the dynamics pro-
duced by this effect has a longer time scale than decoherence,
and most importantly, it does not present eigen-selectivity.
With the aim of checking for a possible frequency dependent
behaviour induced by pulse misadjustment that might be con-
fused with genuine eigen-selectivity, in Sec. II D we presented
a theoretical analysis of the effects of these misadjustments
on the FID signals, considering the spins as a closed system.
The simulations on PAAd6 presented in Sec. II of the sup-
plementary material show that misadjustment cannot be the
source of the observed eigen-selectivity of a closed spin sys-
tem. Besides, these kinds of non-idealities were theoretically
analysed for decoherence produced by the full-quantum dy-
namics in Sec. II D, as well. The behaviour of the signals ex-
tracted by such analysis agrees with the experimental results.
Therefore, this detailed analysis leads us to conclude that the
observed eigen-selectivity is an evidence of the open quantum
system dynamics.

Eigen-selectivity, which introduces a distinction in
the response of the diagonal and off-diagonal elements
of the density matrix, provides an efficient irreversible
mechanism for coherence decay, while preserves the “pop-
ulation” terms which can only change in a much longer
time scale. This behaviour explains the observed buildup of
the quasi-equilibrium in liquid crystals. The results of this
work, together with the conclusions obtained in Refs. 11
and 13, can contribute to elucidate the underlying quantum
mechanisms for decoherence of open quantum systems of
interacting spins, for instance the role played by quantum
correlations between the observed system and the environ-
ment in the damping of the spin coherences.25, 26 Certainly,
these works showed that in liquid crystals it is essential
to assume the quantum character of the spin-environment
coupling to explain the observed irreversible decoherence.
These statements might also apply to interacting spins in
ordinary solids, where irreversible adiabatic decoherence
could provide an explanation for the quasi-equilibrium states
characterized by spin temperatures.44

Summarizing, the occurrence of eigen-selectivity in the
spin dynamics under reversion was verified in several nematic
liquid crystals, through the direct experimental observation of
inhomogeneous decay and spectral compression of the NMR
spectrum under refocusing of the dipolar spin interactions,
over an intermediate time scale. We conclude that the eigen-

selection effect is the fingerprint of decoherence associated
with a quantum open spin system in liquid crystals. Besides,
the dynamics of such interacting spin system with few degrees
of freedom, can be described in terms of quasi-equilibrium
states of each molecule after the irreversible decoherence
damps out the coherent part of the spin state. Therefore, the
observed system reaches these states through a genuine quan-
tum process involving spins and environment, being this a
process of different nature than the fluctuations which govern
thermalization and relaxation. These findings allow to under-
stand the development of the quasi-equilibrium states as be-
ing a consequence of the correlated dynamics of the observed
system and the quantum environment. Accordingly, the quasi-
equilibrium representation in liquid crystal needs not being
perceived heuristically, instead, it should be considered as a
definite stage of the spin system, during its evolution towards
equilibrium.
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APPENDIX A: DEFINITION OF
THE ORDER PARAMETER

In this appendix, we present an expression for the order
parameter of a nematic LC under the quantum description of
the orientational molecular variables. The order parameter Szz

is defined as

Szz ≡ 〈
S(f )

zzi

〉
f

= trf

{
S(f )

zzi ρ
(f )
L(eq)

}
=

∑
f

Si(f )〈f |ρ(f )
L(eq)|f 〉, (A1)

where {| f 〉} is an eigenbasis of the molecular orientational
operator S(f )

zzi with S(f )
zzi |f 〉 = Si(f )|f 〉. If the environment

states form a continuous and dense space we can replace in
Eq. (A1) the sum in the trace by an integral, this is

Szz =
∫

df Si(f )〈f |ρ(f )
L(eq)|f 〉 =

∫
dSiSip

{S}
i (Si). (A2)

In Eq. (A2), we changed the state integration variables df by
the eigenvalue integration variables dSi and we defined the
function

p
{S}
i (Si) =

∫
dEf ρL(eq)(Ef )

[ ∫
df E

∫
df |kf,f E |2

]Ef

Si

,

(A3)
where kf,f E ≡ 〈f |f E〉 and

ρL(eq)(Ef ) ≡ e−βT Ef /Nf .

Besides, {| f E〉} is defined as the eigenbasis of the environ-
ment or lattice Hamiltonian HL with the eigenvalues Ef(f E),
that is, H(f )

L |f E〉 = Ef (f E)|f E〉, and we used the closure re-

lation
∫

df E| f E 〉〈 f E | = 1(f). In Eq. (A3), the symbol [·]Ef

Si
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indicates that the integrals over df E and df are calculated in-
tegrating over the states with the eigenvalues ranging from Ef

to Ef + dEf and from Si to Si + dSi, respectively. We can see
that ∫

dSip
{S}
i (Si) = 1,

thus p
{S}
i (Si) can be interpreted as a probability distribution

function of the eigenvalues Si.
If we consider an homogeneous environment for each

molecule, i.e., absence of border effects, the order pa-
rameter (A2) has the same value for different molecules,
therefore

Szz =
∫

dS1S1p
{S}
1 (S1). (A4)

APPENDIX B: DECOHERENCE FUNCTION FOR A
CONTINUOUS AND DENSE LATTICE HILBERT SPACE

This appendix is dedicated to extract an expression for
the decoherence function (39) under the condition that the en-
vironment states form a continuous and dense space. Accord-
ingly, we can replace in Eq. (39) the sum in the trace by an
integral over the lattice space, this is

G{ζ,ζ ′
i }(t, τ ) =

∫
df

∫
dg

∫
dh kf,gkg,h ρ

h,f

L(eq)

×e−i(ζi−ζ ′
i )Si (f )t e−i(ζi−ζ ′

i )CSL
iζ (h)t2/2

×e−i(ζi−ζ ′
i )CL

i (g){(t+τ )2−[1+(κ+1)−1]τ 2}/2, (B1)

where τ = (κ + 1) t1 is the total time under reversion,
kf, g ≡ 〈 f | g 〉, kg, h ≡ 〈 g | h 〉, and ρ

h,f

L(eq) ≡ 〈h|ρ(f )
L(eq)|f 〉. We

have used in (B1) the eigenbasis {| f 〉}, {| g 〉}, and {|h〉}
of the Hermitian operators H(f )

SLi , iC(f )
i,L , and iC(f )

i,SL(ζ ), re-

spectively, with H(f )
SLi |f 〉 = Si(f )|f 〉, Si(f) = Si(f) − Szz,

iC(f )
i,L|g〉 = CL

i (g)|g〉, and iC(f )
i,SL(ζ )|h〉 = CSL

iζ (h)|h〉, where
Si(f), CL

i (g), and CSL
iζ (h) are real numbers. Also, we used

the closure relations
∫

dg| g 〉〈 g | = 1(f) and
∫

dh| h 〉〈 h | = 1(f).
Now, defining the eigenbasis of the environment or lattice
Hamiltonian HL as {| f E 〉}, with the eigenvalues Ef(f E),
where H(f )

L |f E〉 = Ef (f E)|f E〉 and using the closure rela-
tion

∫
df E| f E 〉〈 f E | = 1(f), we can write

ρ
h,f

L(eq) =
∫

df E kh,f E kf E,f ρL(eq)(f
E), (B2)

where kh,f E ≡ 〈h|f E〉, kf E,f ≡ 〈f E|f 〉, and

ρL(eq)(f
E) ≡ 〈f E|ρ(f )

L(eq)|f E〉 ≡ e−βT Ef (f E )/Nf .

The final decoherence expression is obtained changing in
Eq. (B1) the state integration variables df, dg, and dh, by the
eigenvalue integration variables dSi, dCL

i , and dCSL
iζ , thus

we can finally write

G{ζ,ζ ′
i }(t, τ ) =

∫
dSi e−i(ζi−ζ ′

i )Si t

×
∫

dCL
i e−i(ζi−ζ ′

i )CL
i {(t+τ )2−[1+(κ+1)−1]τ 2}/2

×
∫

dCSL
iζ e−i(ζi−ζ ′

i )CSL
iζ t2/2pi

(
Si, C

L
i , CSL

iζ

)
,

(B3)

where it is defined the function

pi(Si, C
L
i , CSL

iζ )

=
∫

dEf ρL(eq)(Ef )

×
[ ∫

df E

∫
df

∫
dg

∫
dh kf,g kg,h kh,f E kf E,f

]Ef ,Si

CL
i ,CSL

iζ

,

(B4)

and [·]Ef ,Si

CL
i ,CSL

iζ

indicates that the integrals over df E, df, dg, and

dh are calculated integrating over the states with the eigenval-
ues ranging from Ef to Ef + dEf, from Si to Si + dSi,
from CL

i to CL
i + dCL

i , and from CSL
iζ to CSL

iζ + dCSL
iζ , re-

spectively. Under the condition
∫∫∫ ∏

D,n {·}t=0 (see Eq. (41)
for a definition of this condition), the decoherence function
(B3) has the form

G{ζ,ζ ′
i }(t, τ ) �

∫
dSi e−i(ζi−ζ ′

i )Si t

×
∫

dCL
i ei(ζi−ζ ′

i )CL
i τ 2/[2(κ+1)] pi(Si, C

L
i ),

(B5)

where it is defined the function

pi

(
Si, C

L
i

) ≡
∫

dCSL
iζ pi

(
Si, C

L
i , CSL

iζ

)
=

∫
dEf ρL(eq)(Ef )

×
[ ∫

df E

∫
df

∫
dg kf,g kg,f E kf E,f

]Ef ,Si

CL
i

,

(B6)

and [·]Ef ,Si

CL
i

indicates that the integrals over df E, df, and dg

are calculated integrating over the states with the eigenvalues
ranging from Ef to Ef + dEf, from Si to Si + dSi and
from CL

i to CL
i + dCL

i , respectively.

APPENDIX C: FOURIER TRANSFORM OF THE
SELF-SPIN COHERENCES AND THE AQD
CONTRIBUTIONS TO THE DYNAMICS

In the following, we will calculate the Fourier transform
of the self-spin coherences and the AQD contributions to the
FID signal under reversion used in Eq. (52). First, we use that
the Fourier transform of a complex exponential function is a
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Dirac delta function,

Ft {e−i(ζ1−ζ ′
1)Szzt }(ω) = 2πδ[ω − (ζ ′

1 − ζ1)Szz]. (C1)

Next, we will calculate the Fourier transform of the AQD
function, that is,

Ft {G{ζ1,ζ
′
1}(t)}(ω)

=
∫ ∞

−∞
dt e−iωt

×
∫ ∞

−∞
dS1 e−i(ζ1−ζ ′

1)S1t p
{S}
1 (S1)

= 2π

∫ ∞

−∞
dS1 δ[ω − (ζ ′

1 − ζ1)S1] p
{S}
1 (S1),

(C2)

where we used that

δ[ω − (ζ ′
1 − ζ1)S1] = 1

2π

∫ ∞

−∞
dt e−i[ω−(ζ ′

1−ζ1)S1]t .

Using in Eq. (C2) the delta function property

δ
[
ω − (ζ ′

1 − ζ1)S1
] = 1

|ζ ′
1 − ζ1|

δ[S1 − ω/(ζ ′
1 − ζ1)],

we have the following result for the Fourier transform of the
AQD function

Ft {G{ζ1,ζ
′
1}(t)}(ω) = 2π

|ζ ′
1 − ζ1|

p
{S}
1

(
ω

ζ ′
1 − ζ1

)
. (C3)

The last step for obtaining the Fourier transform of the self-
spin coherences and the AQD contribution is to calculate the
Fourier transform of the product of a complex exponential
function with the AQD function, which can be calculated us-
ing the convolution45 of the Fourier transforms (C1) and (C3),
as follows:

Ft {e−i(ζ1−ζ ′
1)SzztGζ1,ζ

′
1
(t)}(ω)

= 1

2π
Ft {e−i(ζ1−ζ ′

1)Szzt }(ω) ∗ Ft {G{ζ1,ζ
′
1}(t)}(ω)

= 2π

|ζ ′
1 − ζ1|

∫ ∞

−∞
dω′ δ[ω − ω′ − (ζ ′

1 − ζ1)Szz]

×p
{S}
1

(
ω′

ζ ′
1 − ζ1

)

= 2π

|ζ ′
1 − ζ1|

p
{S}
1

(
ω − (ζ ′

1 − ζ1)Szz

ζ ′
1 − ζ1

)
, (C4)

where A(ω)∗B(ω) is the convolution between the functions A
and B, and we used in (C4) that

δ[ω − ω′ − (ζ ′
1 − ζ1)Szz] = δ{ω′ − [ω − (ζ ′

1 − ζ1)Szz]}.

APPENDIX D: RELATIONSHIP BETWEEN THE
DECOHERENCE FUNCTION AND THE DISTRIBUTION
PROBABILITY FUNCTION

In order to gain insight into the relationship between the
decoherence function and the distribution probability function

pi, we use that, as shown in Eq. (41), the decoherence func-
tion is the result of a superposition of complex exponential
functions weighted by a distribution of their frequencies. Such
kind of superposition can be generically expressed as follows:

Pi(ζi, t, τ ) =
∫

dAi e−iζiYAi
(t,τ )Ai pi(Ai,ζi, t, τ ),

(D1)
with ζi ≡ ζi − ζ ′

i and YAi
(t, τ ) is some polynomial in t and

τ , the distribution of frequencies of the complex exponential
is determined by pi(Ai, ζ i, t, τ ). The expression (D1) is a
general form for the different integrals in Eq. (41). Therefore,
we can use (D1) to extract conclusions about (41).

We consider that the spin system is coupled with an en-
vironment whose states belong to a continuous and dense
Hilbert space, where a distribution of the eigenvalues of
each complex exponential in Eqs. (41) and (D1) can be de-
fined. Besides, we suppose that such distributions have a gen-
eral bell-shape form around the mean value of the eigenval-
ues, converging to zero fast enough so that integrations in
Eqs. (41) and (D1) can be extended to ±∞.

Accordingly, we can observe that Eq. (D1) is the Fourier
transform on the variable Ai of the function pi(Ai, ζ i, t, τ )
valued in ζiYAi

(t, τ ), that is

Pi(ζi, t, τ )

= [FAi
{pi(Ai,ζi, t, τ )} (α)]α=ζiYAi

(t,τ )

=
[∫ +∞

−∞
dAi e−iαAi pi(Ai,ζi, t, τ )

]
α=ζiYAi

(t,τ )

.

(D2)

Therefore, Eq. (41) is the Fourier transform over all the vari-
ables of pi, which is valuated in some polynomial in t and/or
τ multiplied by ζ i for each variable.
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