374 research outputs found

    Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer.

    Get PDF
    Metastatic non-small cell lung cancer (NSCLC) is a highly fatal and immunogenic malignancy. Although the immune system is known to recognize these tumor cells, one mechanism by which NSCLC can evade the immune system is via overexpression of programmed cell death ligand 1 (PD-L1). Recent clinical trials of PD-1 and PD-L1 inhibitors have returned promising clinical responses. Important for personalizing therapy, patients with higher intensity staining for PD-L1 on tumor biopsies responded better. Thus, there has been interest in using PD-L1 tumor expression as a criterion for patient selection. Currently available methods of screening involve invasive tumor biopsy, followed by histological grading of PD-L1 levels. Biopsies have a high risk of complications, and only allow sampling from limited tumor sections, which may not reflect overall tumor heterogeneity. Circulating tumor cell (CTC) PD-L1 levels could aid in screening patients, and could supplement tissue PD-L1 biopsy results by testing PD-L1 expression from disseminated tumor sites. Towards establishing CTCs as a screening tool, we developed a protocol to isolate CTCs at high purity and immunostain for PD-L1. Monitoring of PD-L1 expression on CTCs could be an additional biomarker for precision medicine that may help in determining response to immunotherapies

    First-line nivolumab plus ipilimumab for metastatic non-small cell lung cancer, including patients with ECOG performance status 2 and other special populations: CheckMate 817

    Get PDF
    Antigen CTLA-4; Immunoteràpia; Neoplàsies pulmonarsAntígeno CTLA-4; Inmunoterapia; Neoplasias PulmonaresCTLA-4 antigen; Immunotherapy; Lung NeoplasmsBackground CheckMate 817, a phase 3B study, evaluated flat-dose nivolumab plus weight-based ipilimumab in patients with metastatic non-small cell lung cancer (NSCLC). Here, in this research, we report on first-line treatment in patients with Eastern Cooperative Oncology Group (ECOG) performance status (PS) 0–1 (cohort A) and special populations (cohort A1: ECOG PS 2; or ECOG PS 0–1 with untreated brain metastases, renal impairment, hepatic impairment, or controlled HIV infection). Methods Cohorts A and A1 received nivolumab 240 mg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks. The primary endpoint was the incidence of grade 3–4 and grade 5 immune-mediated adverse events (IMAEs; adverse events (AEs) deemed potentially immune-related, occurring <100 days of last dose, and treated with immune-modulating medication (except endocrine events)) and treatment-related select AEs (treatment-related AEs with potential immunological etiology requiring frequent monitoring/intervention, reported between first dose and 30 days after the last dose) in cohort A; efficacy endpoints were secondary/exploratory. In cohort A1, safety/efficacy assessment was exploratory. Results The most common grade 3–4 IMAEs were pneumonitis (5.1%), diarrhea/colitis (4.9%), and hepatitis (4.6%) in cohort A (N=391) and diarrhea/colitis (3.5%), hepatitis (3.5%), and rash (3.0%) in cohort A1 (N=198). The most common grade 3–4 treatment-related select AEs were hepatic (5.9%), gastrointestinal (4.9%), and pulmonary (4.6%) events in cohort A and gastrointestinal (4.0%), skin (3.5%), and endocrine (3.0%) events in cohort A1. No grade 5 IMAEs or treatment-related select AEs occurred. Treatment-related deaths occurred in 4 (1.0%) and 3 (1.5%) patients in cohorts A and A1, respectively. Three-year overall survival (OS) rates were 33.7% and 20.5%, respectively. Conclusions Flat-dose nivolumab plus weight-based ipilimumab was associated with manageable safety and durable efficacy in cohort A, consistent with data from phase 3 metastatic NSCLC studies. Special populations of cohort A1 including patients with ECOG PS 2 or ECOG PS 0–1 with untreated brain metastases had manageable treatment-related toxicity and clinically meaningful 3-year OS rate.This work was supported by Bristol Myers Squibb (Princeton, New Jersey, USA)

    Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology.

    Get PDF
    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells

    Abemaciclib in Combination with Single-Agent Options in Patients with Stage IV Non–Small Cell Lung Cancer: A Phase Ib Study

    Get PDF
    Purpose: Abemaciclib, a dual inhibitor of cyclin-dependent kinases 4 and 6, has demonstrated preclinical activity in non–small cell lung cancer (NSCLC). A multicenter, nonrandomized, open-label phase Ib study was conducted to test safety, MTD, pharmacokinetics, and preliminary antitumor activity of abemaciclib in combination with other therapies for treatment in patients with metastatic NSCLC. Patients and Methods: An initial dose escalation phase was used to determine the MTD of twice-daily oral abemaciclib (150, 200 mg) plus pemetrexed, gemcitabine, or ramucirumab, followed by an expansion phase for each drug combination. Pemetrexed and gemcitabine were administered according to label. The abemaciclib plus ramucirumab study examined two dosing schedules. Results: The three study parts enrolled 86 patients; all received ≥1 dose of combination therapy. Across arms, the most common treatment-emergent adverse events were fatigue, diarrhea, neutropenia, decreased appetite, and nausea. The trial did not identify an abemaciclib MTD for the combination with pemetrexed or gemcitabine but did so for the combination of abemaciclib with days 1 and 8 ramucirumab (8 mg/kg). Plasma sample analysis showed that abemaciclib did not influence the pharmacokinetics of the combination agents and the combination agents did not affect abemaciclib exposure. The disease control rate was 57% for patients treated with abemaciclib–pemetrexed, 25% for abemaciclib–gemcitabine, and 54% for abemaciclib–ramucirumab. Median progression-free survival was 5.55, 1.58, and 4.83 months, respectively. Conclusions: Abemaciclib demonstrated an acceptable safety profile when dosed on a continuous twice-daily schedule in combination with pemetrexed, gemcitabine, or ramucirumab. Abemaciclib exposures remained consistent with those observed in single-agent studies

    Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium

    Get PDF
    Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC

    A Markovian event-based framework for stochastic spiking neural networks

    Full text link
    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks

    Checking the list: Can a model of Down syndrome help us explore the intellectual accessibility of Heritage sites?

    Get PDF
    There is currently a lack of provision for, and research into, the intellectual accessibility of heritage sites. This paper explores some possible ways forward. It examines recent research with people described as having Down syndrome and uses the syndrome's identified characteristics to create good practice guidelines. It assesses these guidelines against an audio tour written for people with learning difficulties. In conclusion, the paper suggests that drawing upon a generalised model of Down syndrome and these good practice guidelines will allow sites to identify some potential barriers and enablers to intellectual accessibility, but that fully to appreciate the effectiveness of their provision they must still institute site?specific research by people with learning difficulties

    The role of Comprehension in Requirements and Implications for Use Case Descriptions

    Get PDF
    Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements. Therefore, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Hence, the paper examines guidelines which have been proposed, in this case for use case descriptions, and the extent to which they agree with discourse process theory; before suggesting refinements to the guidelines which attempt to utilise lessons learned from our richer understanding of the underlying discourse process theory. For example, we suggest subtly different sets of writing guidelines for the different tasks of requirements, specification and design

    A Phase 1b Study of Telisotuzumab Vedotin in Combination With Nivolumab in Patients With NSCLC

    Get PDF
    Introduction: Telisotuzumab vedotin (Teliso-V) is an anti-c-Met-directed antibody-drug conjugate that has exhibited antitumor activity as monotherapy in NSCLC. Its potential activity combined with programmed cell death protein-1 inhibitors has not been previously evaluated. Methods: In a phase 1b study (NCT02099058), adult patients (≥18 y) with advanced NSCLC received combination therapy with Teliso-V (1.6, 1.9, or 2.2 mg/kg, every 2 wk) plus nivolumab (3 mg/kg, 240 mg, or per locally approved label). The primary objective was to assess safety and tolerability; secondary objectives included the evaluation of antitumor activity. Results: As of January 2020, a total of 37 patients received treatment with Teliso-V (safety population) in combination with nivolumab; 27 patients (efficacy population) were c-Met immunohistochemistry-positive. Programmed death-ligand 1 (PD-L1) status was evaluated in the efficacy population (PD-L1-positive [PD-L1+]: n = 15; PD-L1-negative [PD-L1-]: n = 9; PD-L1-unknown: n = 3). The median age was 67 years and 74% (20 of 27) of patients were naive to immune checkpoint inhibitors. The most common any-grade treatment-related adverse events were fatigue (27%) and peripheral sensory neuropathy (19%). The pharmacokinetic profile of Teliso-V plus nivolumab was similar to Teliso-V monotherapy. The objective response rate was 7.4%, with two patients (PD-L1+, c-Met immunohistochemistry H-score 190, n = 1; PD-L1-, c-Met H-score 290, n = 1) having a confirmed partial response. Overall median progression-free survival was 7.2 months (PD-L1+: 7.2 mo; PD-L1-: 4.5 mo; PD-L1-unknown: not reached). Conclusions: Combination therapy with Teliso-V plus nivolumab was well tolerated in patients with c-Met+ NSCLC with limited antitumor activity

    Iodofiltic Acid I 123 (BMIPP) Fatty Acid Imaging Improves Initial Diagnosis in Emergency Department Patients With Suspected Acute Coronary Syndromes A Multicenter Trial

    Get PDF
    ObjectivesThe aim of this study was to assess the performance of β-methyl-p-[123I]-iodophenyl-pentadecanoic acid (BMIPP) single-photon emission computed tomography (SPECT) to detect acute coronary syndromes (ACS) in emergency department patients with chest pain.BackgroundEmergency department diagnosis of chest pain is problematic, often requiring prolonged observation and stress testing. BMIPP SPECT detects abnormalities in fatty acid metabolism resulting from myocardial ischemia, even many hours after symptom cessation.MethodsEmergency department patients with suspected ACS were enrolled at 50 centers. Patients received 5 mCi BMIPP within 30 h of symptom cessation. BMIPP SPECT images were interpreted semiquantitatively by 3 blinded readers. Initial clinical diagnosis was based on symptoms, initial electrocardiograms, and troponin, whereas the final diagnosis was based on all available data (including angiography and stress SPECT) but not BMIPP SPECT. Final diagnoses were adjudicated by a blinded committee as ACS, intermediate likelihood of ACS, or negative for ACS.ResultsA total of 507 patients were studied and efficacy was evaluated in 448 patients with sufficient data. The sensitivity of BMIPP by 3 blinded readers for a final diagnosis of ACS and intermediate likelihood of ACS was 71% (95% confidence interval [CI]: 64% to 79%), 74% (95% CI: 68% to 81%), and 69% (95% CI: 62% to 77%); the corresponding specificity of BMIPP was 67% (95% CI: 61% to 73%), 54% (95% CI: 48% to 60%), and 70% (95% CI: 64% to 76%). Compared with the initial diagnosis alone, BMIPP + initial diagnosis increased sensitivity from 43% to 81% (p < 0.001), negative predictive value from 62% to 83% (p < 0.001), and positive predictive value from 41% to 58% (p < 0.001), whereas specificity was unchanged (61% to 62%, p = NS).ConclusionsThe addition of BMIPP data to the initially available clinical information adds incremental value toward the early diagnosis of an ACS, potentially allowing determination of the presence or absence of ACS to be made earlier in the evaluation process. (Safety and Efficacy Iodofiltic Acid I 123 in the Treatment of Acute Coronary Syndrome [Zeus-ACS]; NCT00514501
    corecore