62 research outputs found

    Estimating total evaporation at the field scale using the SEBS model and data infilling procedures

    Get PDF
    The spatial representativeness of total evaporation estimates (ET) acquired from conventional approaches is limited, as these techniques generally provide site-specific values. The use of satellite earth observation has shown a great deal of potential in capturing spatially representative hydro-meteorological flux data and therefore represents a practical alternative for estimating ET. However, one of the challenges facing ET estimation using satellite earth observation data is the effect of clouds, which reduce the number of satellite images available for use. The objectives of this paper were firstly to validate satellite-derived ET estimates against estimates acquired from a surface renewal system and, secondly, to assess the feasibility of two infilling techniques to create a daily satellite-derived ET time series. The Surface Energy Balance System (SEBS) model was used to derive daily ET using MODIS imagery. Two infilling approaches, the Kcact approach and a linear interpolation approach, were evaluated by comparing their respective values against in-situ ET measurements, as well as SEBS ET estimates derived using MODIS. The results showed that SEBS ET estimates were approximately 47% higher and produced R2 and RMSE values of 0.33 and 2.19 mm∙d-1, respectively, compared to in-situ ET values. The ET estimates obtained by applying the Kcact approach and the linear interpolation approach compared favourably with the in-situ ET values, producing RMSE values of 0.9 mm∙d-1 and 0.6 mm∙d-1, respectively. However, comparisons of ET estimates acquired by applying the Kcact approach and the linear interpolation approach against the SEBS ET indicated a poor match, yielding RMSE values of 1.96 mm∙d-1 and 1.54 mm∙d-1, respectively.Keywords: satellite earth observation, SEBS Model, ET, infilling, surface renewal syste

    Quantifying the contribution of riparian total evaporation to streamflow transmission losses: Preliminary investigations along the Groot Letaba river

    Get PDF
    The Groot Letaba River, situated in the semi-arid north-eastern region of South Africa is an example of a river system in which the uncertainty associated with transmission losses (TL) has limited the effective management of environmental water requirement (EWR) flows. TL along the river significantly impacts EWR flows, as it is often the case that specified EWR releases are not adequately received further downstream. Due to the limited understanding of the magnitude of TL, as well as the dominant contributing processes to TL within the region, it remains a challenge to operate the river using downstream targets far from the source of operations. In an attempt to address this knowledge gap, detailed characterizations of hydrological processes were performed along the lower reaches of the river, which centred around the estimation of riparian total evaporation and quantifying the rapport between surface and subsurface water flow processes. Riparian total evaporation was estimated using the satellite-based surface energy balance system model, soil water evaporation measurements and open water evaporation estimates. Losses from the river to the adjacent aquifer were determined from the continuous monitoring of the groundwater phreatic surface and characterization of aquifer hydraulic properties. The results of these investigations indicated that present flows within the system are likely to be insufficient to satisfy gazetted median and extreme low flow targets. Overall, the study details key hydrological processes influencing TL along the river. It should, however, be noted that these observations only provide an understanding of the system over a limited observation period

    Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing

    Get PDF
    sorLA is a sorting receptor for amyloid precursor protein (APP) genetically linked to Alzheimer's disease (AD). Retromer, an adaptor complex in the endosome-to-Golgi retrieval pathway, has been implicated in APP transport because retromer deficiency leads to aberrant APP sorting and processing and levels of retromer proteins are altered in AD. Here we report that sorLA and retromer functionally interact in neurons to control trafficking and amyloidogenic processing of APP. We have identified a sequence (FANSHY) in the cytoplasmic domain of sorLA that is recognized by the VPS26 subunit of the retromer complex. Accordingly, we characterized the interaction between the retromer complex and sorLA and determined the role of retromer on sorLA-dependent sorting and processing of APP. Mutations in the VPS26 binding site resulted in receptor redistribution to the endosomal network, similar to the situation seen in cells with VPS26 knockdown. The sorLA mutant retained APP-binding activity but, as opposed to the wild-type receptor, misdirected APP into a distinct non-Golgi compartment, resulting in increased amyloid processing. In conclusion, our data provide a molecular link between reduced retromer expression and increased amyloidogenesis as seen in patients with sporadic AD

    Synchronous online CPD: empirical support for the value of webinars in career settings

    Get PDF
    The careers profession in England is facing unprecedented challenges. Initiatives to improve service delivery while keeping costs low are attractive and online training holds the promise of high impact at low cost. The present study employs a qualitative methodology to evaluate a series of online ‘webinars’ conducted with 15 careers advisers. Results showed that the technology itself could impede learning, and participants missed out on the peer-to-peer interaction that takes place in a ‘bricks and mortar’ setting, but overall participants found that access to relevant, good quality training from the convenience of their workplace more than compensated for the challenges. The article offers conceptual support for the viability of online learning through the theory of equivalency, andragogy and transactional distance theory, and makes recommendations for practice

    Groundwater–surface water interactions in an ephemeral savanna catchment, Kruger National Park

    Get PDF
    The semi-arid conditions in savanna landscapes ensure that ephemeral drainage dominates the hydrological network in these dryland systems. Quantification of their hydrological processes is important to inform ecosystem understanding and future conservation efforts under a changing climate, and to provide guidance for restoration. By combining in situ hydrometric observations, hydrochemistry, remote sensing and a soil water balance model, we characterise the groundwater–surface water interactions in ephemeral low-order catchments of the granitoid regions of the southern Kruger National Park (KNP). Streams at the lowest orders are augmented by lateral interflows from the catena, although the second-and third-order stream reaches are conduits for groundwater recharge to the fractured rock aquifer; the soils of the crests and foot-slopes also show preferential flow, and are truly recharge soils, whilst the duplex soils of the midslopes clearly show their responsive nature to a low soil moisture deficit in the shallow horizons. Actual evaporation (aET) differed between catena elements with surprisingly little variation at third-order hillslopes, with the greatest overall aET at the first order. Meanwhile, soil water balances demonstrated a significant variation in storage of the riparian zones as a result of interflow from upslope and aET losses. Furthermore, data support broader-scale observations that groundwater recharge through the vadose zone to the fractured rock aquifer is dependent upon threshold antecedent precipitation conditions. Moderate precipitation events (5 mm/day – 35 mm/day) over a 2–3 week period initiate groundwater responses with a 2–3 month lag, whilst intense precipitation events (>100 mm/day) are expressed within 2–3 weeks

    Gonadal Transcriptome Alterations in Response to Dietary Energy Intake: Sensing the Reproductive Environment

    Get PDF
    Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment

    Importance of factors determining the effective lifetime of a mass, long-lasting, insecticidal net distribution: a sensitivity analysis

    Get PDF
    ABSTRACT: BACKGROUND: Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection. METHODS: Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes. RESULTS: The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance. CONCLUSIONS: The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measur

    VPS29 Is Not an Active Metallo-Phosphatase but Is a Rigid Scaffold Required for Retromer Interaction with Accessory Proteins

    Get PDF
    VPS29 is a key component of the cargo-binding core complex of retromer, a protein assembly with diverse roles in transport of receptors within the endosomal system. VPS29 has a fold related to metal-binding phosphatases and mediates interactions between retromer and other regulatory proteins. In this study we examine the functional interactions of mammalian VPS29, using X-ray crystallography and NMR spectroscopy. We find that although VPS29 can coordinate metal ions Mn2+ and Zn2+ in both the putative active site and at other locations, the affinity for metals is low, and lack of activity in phosphatase assays using a putative peptide substrate support the conclusion that VPS29 is not a functional metalloenzyme. There is evidence that structural elements of VPS29 critical for binding the retromer subunit VPS35 may undergo both metal-dependent and independent conformational changes regulating complex formation, however studies using ITC and NMR residual dipolar coupling (RDC) measurements show that this is not the case. Finally, NMR chemical shift mapping indicates that VPS29 is able to associate with SNX1 via a conserved hydrophobic surface, but with a low affinity that suggests additional interactions will be required to stabilise the complex in vivo. Our conclusion is that VPS29 is a metal ion-independent, rigid scaffolding domain, which is essential but not sufficient for incorporation of retromer into functional endosomal transport assemblies

    Retrograde traffic in the biosynthetic-secretory route

    Get PDF
    In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments’ balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations
    • …
    corecore