192 research outputs found

    CUGC for hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome

    Get PDF
    From 1999 to date, 50 affecting function variants have been identified and associated to HHH syndrome [1–5]. As it is not available in the literature a complete up-to-date list of disease-causing variants for SLC25A15 gene, we included this information as a Supplementary Excel sheet (See Supplementary Material File #1): this list was created by using LOVD and ClinVar databases and liked to the relevant literature reference. Reported variants consist of: 29 missense variants, 4 frameshift, 11 nonsense, 2 splicing, 2 small deletion, 1 in frame insertion, 1 gross deletion

    GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNγovercomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape

    Get PDF
    Immune escape mechanisms employed by neuroblastoma (NB) cells include secretion of immunosuppressive factors disrupting effective antitumor immunity. The use of cellular therapy to treat solid tumors needs to be implemented. Killing activity of anti-GD2 Chimeric Antigen Receptor (CAR) T or natural killer (NK) cells against target NB cells was assessed through coculture experiments and quantified by FACS analysis. ELISA assay was used to quantify interferon-gamma (IFN gamma) secreted by NK and CAR T cells. Real Time PCR and Western Blot were performed to analyze gene and protein levels modifications. Transcriptional study was performed by chromatin immunoprecipitation and luciferase reporter assays on experiments of mutagenesis on the promoter sequence. NB tissue sample were analyzed by IHC and Real Time PCR to perform correlation study. We demonstrate that Indoleamine-pyrrole 2,3-dioxygenase1 (IDO1), due to its ability to convert tryptophan into kynurenines, is involved in NB resistance to activity of immune cells. In NB, IDO1 is able to inhibit the anti-tumor effect displayed by of both anti-GD2 CAR (GD2.CAR) T-cell and NK cells, mainly by impairing their IFN gamma production. Furthermore, inhibition of MYCN expression in NB results into accumulation of IDO1 and consequently of kynurenines, which negatively affect the immune surveillance. Inverse correlation between IDO1 and MYCN expression has been observed in a wide cohort of NB samples. This finding was supported by the identification of a transcriptional repressive role of MYCN on IDO1 promoter. The evidence of IDO1 involvement in NB immune escape and its ability to impair NK and GD2.CAR T-cell activity contribute to clarify one of the possible mechanisms responsible for the limited efficacy of these immunotherapeutic approaches. A combined therapy of NK or GD2.CAR T-cells with IDO1 inhibitors, a class of compounds already in phase I/II clinical studies, could represent a new and still unexplored strategy capable to improve long-term efficacy of these immunotherapeutic approaches

    Gains and losses of coral skeletal porosity changes with ocean acidification acclimation

    No full text
    Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO(2) vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean

    The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Get PDF
    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions

    A citizen science approach: A detailed ecological assessment of subtropical reefs at point lookout, Australia

    Get PDF
    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottomup approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs

    The tree that hides the forest: Cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level

    Get PDF
    Background: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. Methods: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. Results: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. Conclusions: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.[Figure not available: See fulltext.

    Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale

    Get PDF
    BACKGROUND: Biting midges, Culicoides, of the Obsoletus group and the Pulicaris group have been involved in recent outbreaks of bluetongue virus and the former was also involved in the Schmallenberg virus outbreak in northern Europe. METHODS: For the first time, here we investigate the local abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non-spatial covariates expected to affect Culicoides abundance. RESULTS: The distance to sheep penned in the corner of the study field significantly increased the abundance level up to 200 meters away from the sheep. Spatial clustering was found to be significant but could not be explained by any known factors, and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant with a peak at just below 16 degrees Celcius. Surprisingly, there was a significant positive impact of wind speed. The CAR model for the Pulicaris group also identified a significant attraction to the smaller groups of sheep placed in the field. Furthermore, a large number of spatial covariates which were incorrectly found to be significant in ordinary regression models were not significant in the CAR models. The 95% C.I. on the prediction estimates ranged from 20.4% to 304.8%, underlining the difficulties of predicting the abundance of Culicoides. CONCLUSIONS: We found that significant spatial clusters of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared to the rest of the field
    corecore