12 research outputs found

    Consumer Cost Sharing in Private Health Insurance: On the Threshold of Change

    Get PDF
    Employers are asking employees to pay more for health care through higher premium contributions, share of contribution, and out-of-pocket maximums, along with variations in deductibles, copays, and coinsurance based on choice of providers, networks, drugs, and other services. This issue brief examines consumer cost-sharing trends in private insurance, discusses the outlook for cost sharing in employment-based benefits, and considers public policies to support health care markets for consumers

    Pharmacy Benefits: New Concepts in Plan Design

    Get PDF
    This issue brief examines changes to prescription drug benefit coverage in large-employer plans and implications for a Medicare prescription drug benefit. The brief discusses reasons behind employer benefit plan redesign and recent coverage trends, as well as potential paths to modernize benefits

    Pharmacy Benefit Managers: A Model for Medicare?

    Get PDF
    This issue brief uses large-employer experiences with pharmacy benefit managers (PBMs) to shed light on their potential as Medicare outpatient drug benefit administrators. PBM management techniques are discussed, as well as employer perspectives on PBM strengths and weaknesses and lessons learned. Considerations for Medicare policy are also examined. The brief built on a previous NHPF issue brief entitled The ABCs of PBMs

    Depression: A Decade of Progress, More to Do

    Get PDF
    This issue brief discusses the most recent findings on depression prevalence and cost; examines trends in outpatient treatment, including the dramatic growth in antidepressant use; discusses efforts to improve treatment in primary care; and explores possible public policy avenues for improving treatment access and quality

    The Global Phosphorylation Landscape of SARS-CoV-2 Infection

    No full text
    International audienceThe causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies

    Feasibility of reporting results of large randomised controlled trials to participants:experience from the Fluoxetine or Control under supervision (FOCUS) trial

    No full text
    Objectives Informing research participants of the results of studies in which they took part is viewed as an ethical imperative. However, there is little guidance in the literature about how to do this. The Fluoxetine Or Control Under Supervision trial randomised 3127 patients with a recent acute stroke to 6 months of fluoxetine or placebo and was published in the Lancet on 5 December 2018. The trial team decided to inform the participants of the results at exactly the same time as the Lancet publication, and also whether they had been allocated fluoxetine or placebo. In this report, we describe how we informed participants of the results.Design In the 6-month and 12-month follow-up questionnaires, we invited participants to provide an email address if they wished to be informed of the results of the trial. We re-opened our trial telephone helpline between 5 December 2018 and 31 March 2019.Setting UK stroke services.Participants 3127 participants were randomised. 2847 returned 6-month follow-up forms and 2703 returned 12-month follow-up forms; the remaining participants had died (380), withdrawn consent or did not respond.Results Of those returning follow-up questionnaires, a total of 1845 email addresses were provided and a further 50 people requested results to be sent by post. Results were sent to all email and postal addresses provided; 309 emails were returned unrecognised. Seventeen people replied, of whom three called the helpline and the rest responded by email.Conclusion It is feasible to disseminate results of large trials to research participants, though only around 60% of those randomised wanted to receive the results. The system we developed was efficient and required very little resource, and could be replicated by trialists in the future.Trial registration number ISRCTN83290762; Post-results

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    No full text
    International audienceSpinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far
    corecore