66 research outputs found

    Keith County Test-Hole Logs: Nebraska Water Survey Test-Hole Report No. 51

    Get PDF
    In 1930, the Conservation and Survey Division (CSD) of the University of Nebraska and the U.S. Geological Survey began a program of cooperative groundwater studies in Nebraska. Since then test drilling by use of rotary drilling equipment has been an integral part of that program. This report contains logs of all the test holes drilled in the county under the program as well as those drilled by the Conservation and Survey Division with financial assistance from other government agencies. The maps in this report show the locations of all test holes drilled in the county since 1934 (Figure la–d). Present techniques of test-hole logging and sampling include use of drilling mud suitable to drilling conditions, timing by stopwatch of the drilling of each 5-foot increment of depth, and removal of all cuttings from the test hole at intervals of 5 feet or less. During the drilling of the hole, cuttings from each interval are examined immediately; samples representing each 5-foot interval and each recognizable change in material are retained. After samples are washed, they are described lithologically and the color is evaluated by comparison with standard color charts. The samples then are dried, cataloged, and stored. All samples are processed and kept on open file in the offices of the Conservation and Survey Division, 113 Nebraska Hall, University of Nebraska-Lincoln, 68588-0517. Beginning in September 1951, some of the test holes have been logged electrically. Geophysical logs (e-logs) often can be used to determine formation boundaries more precisely than by field sampling, especially where differences in rock types from one formation to another occur at the boundary. Figure 2 is an example of geophysical logs of a test hole from Keith county (14-S-82) with formation boundaries shown. Departures of the curves from the center lines generally indicate that the geologic unit is becoming coarser grained. A notation on each test-hole log indicates if geophysical logs are part of the original test-hole data in the CSD office in Lincoln. This publication is one of a series being issued to make more readily available the record of test holes drilled since 1930. The series of publications is made on a county basis and includes, with some exceptions, logs of all test holes drilled in each of the counties. The logs have not been reviewed for conformance with editorial standards and nomenclature. In the case of Keith County, descriptions of strata done in earlier test-hole reports are included with some revised formation information in this report

    Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array

    Get PDF
    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ∼700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin[superscript −2]. The radio lobes have one of the steepest spectral indices yet observed: α = −2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10[superscript −7] Mpc[superscript −3] and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.National Science Foundation (U.S.) (Grant AST CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Get PDF
    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array

    Get PDF
    We present new wide-field observations of Centaurus A (Cen A) and the surrounding region at 118 MHz with the Murchison Widefield Array (MWA) 32-tile prototype, with which we investigate the spectral-index distribution of Cen A's giant radio lobes. We compare our images to 1.4 GHz maps of Cen A and compute spectral indices using temperature–temperature plots and spectral tomography. We find that the morphologies at 118 MHz and 1.4 GHz match very closely apart from an extra peak in the southern lobe at 118 MHz, which provides tentative evidence for the existence of a southern counterpart to the northern middle lobe of Cen A. Our spatially averaged spectral indices for both the northern and southern lobes are consistent with previous analyses, however we find significant spatial variation of the spectra across the extent of each lobe. Both the spectral-index distribution and the morphology at low radio frequencies support a scenario of multiple outbursts of activity from the central engine. Our results are consistent with inverse-Compton modelling of radio and gamma-ray data that support a value for the lobe age of between 10 and 80 Myr.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant PHY-0835713)National Science Foundation (U.S.) (Grant CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0908884)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    KELT-9 b's Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin-Orbit Misalignment

    Full text link
    KELT-9 b is an ultra hot Jupiter transiting a rapidly rotating, oblate early-A-type star in a polar orbit. We model the effect of rapid stellar rotation on KELT-9 b's transit light curve using photometry from the Transiting Exoplanet Survey Satellite (\tess) to constrain the planet's true spin-orbit angle and to explore how KELT-9 b may be influenced by stellar gravity darkening. We constrain the host star's equatorial radius to be 1.089±0.0171.089\pm0.017 times as large as its polar radius and its local surface brightness to vary by 38\sim38\% between its hot poles and cooler equator. We model the stellar oblateness and surface brightness gradient and find that it causes the transit light curve to lack the usual symmetry around the time of minimum light. We take advantage of the light curve asymmetry to constrain KELT-9 b's true spin orbit angle (8711+10{87^\circ}^{+10^\circ}_{-11^\circ}), agreeing with \citet{gaudi2017giant} that KELT-9 b is in a nearly polar orbit. We also apply a gravity darkening correction to the spectral energy distribution model from \citet{gaudi2017giant} and find that accounting for rapid rotation gives a better fit to available spectroscopy and yields a more reliable estimate for the star's polar effective temperature.Comment: Accepted for Publication in ApJ. arXiv admin note: text overlap with arXiv:1911.0502

    TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star

    Get PDF
    We present the discovery of TOI 540 b, a hot planet slightly smaller than Earth orbiting the low-mass star 2MASS J05051443-4756154. The planet has an orbital period of P=1.239149P = 1.239149 days (±\pm 170 ms) and a radius of r=0.903±0.052REarthr = 0.903 \pm 0.052 R_{\rm Earth}, and is likely terrestrial based on the observed mass-radius distribution of small exoplanets at similar insolations. The star is 14.008 pc away and we estimate its mass and radius to be M=0.159±0.014MSunM = 0.159 \pm 0.014 M_{\rm Sun} and R=0.1895±0.0079RSunR = 0.1895 \pm 0.0079 R_{\rm Sun}, respectively. The star is distinctive in its very short rotational period of Prot=17.4264+/0.0094P_{\rm rot} = 17.4264 +/- 0.0094 hours and correspondingly small Rossby number of 0.007 as well as its high X-ray-to-bolometric luminosity ratio of LX/Lbol=0.0028L_X / L_{\rm bol} = 0.0028 based on a serendipitous XMM-Newton detection during a slew operation. This is consistent with the X-ray emission being observed at a maximum value of LX/Lbol103L_X / L_{\rm bol} \simeq 10^{-3} as predicted for the most rapidly rotating M dwarfs. TOI 540 b may be an alluring target to study atmospheric erosion due to the strong stellar X-ray emission. It is also among the most accessible targets for transmission and emission spectroscopy and eclipse photometry with JWST, and may permit Doppler tomography with high-resolution spectroscopy during transit. This discovery is based on precise photometric data from TESS and ground-based follow-up observations by the MEarth team.Comment: 18 pages, 7 figures. Accepted for publication in The Astronomical Journa

    TOI-3235 b: a transiting giant planet around an M4 dwarf star

    Get PDF
    We present the discovery of TOI-3235 b, a short-period Jupiter orbiting an M-dwarf with a stellar mass close to the critical mass at which stars transition from partially to fully convective. TOI-3235 b was first identified as a candidate from TESS photometry, and confirmed with radial velocities from ESPRESSO, and ground-based photometry from HATSouth, MEarth-South, TRAPPIST-South, LCOGT, and ExTrA. We find that the planet has a mass of 0.665±0.025MJ\mathrm{0.665\pm0.025\,M_J} and a radius of 1.017±0.044RJ\mathrm{1.017\pm0.044\,R_J}. It orbits close to its host star, with an orbital period of 2.5926d\mathrm{2.5926\,d}, but has an equilibrium temperature of 604K\mathrm{\approx 604 \, K}, well below the expected threshold for radius inflation of hot Jupiters. The host star has a mass of 0.3939±0.0030M\mathrm{0.3939\pm0.0030\,M_\odot}, a radius of 0.3697±0.0018R\mathrm{0.3697\pm0.0018\,R_\odot}, an effective temperature of 3389K\mathrm{3389 \, K}, and a J-band magnitude of 11.706±0.025\mathrm{11.706\pm0.025}. Current planet formation models do not predict the existence of gas giants such as TOI-3235 b around such low-mass stars. With a high transmission spectroscopy metric, TOI-3235 b is one of the best-suited giants orbiting M-dwarfs for atmospheric characterization.Comment: 15 pages, 4 figures. Accepted for publication in APJ
    corecore