487 research outputs found

    VLBA imaging of a periodic 12.2 GHz methanol maser flare in G9.62+0.20E

    Full text link
    The class II methanol maser source G9.62+0.20E undergoes periodic flares at both 6.7 and 12.2 GHz. The flare starting in 2001 October was observed at seven epochs over three months using the VLBA at 12.2 GHz. High angular resolution images (beam size \sim 1.7 x 0.6 mas) were obtained, enabling us to observe changes in 16 individual maser components. It was found that while existing maser spots increased in flux density, no new spots developed and no changes in morphology were observed. This rules out any mechanism which disturbs the masing region itself, implying that the flares are caused by a change in either the seed or pump photon levels. A time delay of 1--2 weeks was observed between groups of maser features. These delays can be explained by light travel time between maser groups. The regularity of the flares can possibly be explained by a binary system.Comment: 11 pages, accepted for publication in MNRA

    Periodic class II methanol masers in G9.62+0.20E

    Full text link
    We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star forming region G9.62+0.20E for a time span of more than 2600 days. The earlier reported period of 244 days is confirmed. The results of monitoring the 107 GHz methanol maser for two flares are also presented. The results show that flaring occurs in all three masing transitions. It is shown that the average flare profiles of the three masing transitions are similar. The 12.2 GHz masers are the most variable of the three masers with the largest relative amplitude having a value of 2.4. The flux densities for the different masing transitions are found to return to the same level during the low phase of the masers, suggesting that the source of the periodic flaring is situated outside the masing region, and that the physical conditions in the masing region are relatively stable. On the basis of the shape of the light curve we excluded stellar pulsations as the underlying mechanism for the periodicity. It is argued that a colliding wind binary can account for the observed periodicity and provide a mechanism to qualitatively explain periodicity in the seed photon flux and/or the pumping radiation field. It is also argued that the dust cooling time is too short to explain the decay time of about 100 days of the maser flare. A further analysis has shown that for the intervals from days 48 to 66 and from days 67 to 135 the decay of the maser light curve can be interpreted as due to the recombination of a thermal hydrogen plasma with densities of approximately 1.6×106cm31.6 \times 10^6 \mathrm{cm^{-3}} and 6.0×105cm36.0 \times 10^5 \mathrm{cm^{-3}} respectively.Comment: 11 pages, 9 figuer

    KAT-7 Science Verification: Using HI Observations of NGC 3109 to Understand its Kinematics and Mass Distribution

    Full text link
    HI observations of the Magellanic-type spiral NGC 3109, obtained with the seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass distribution. Our results are compared to what is obtained using VLA data. KAT-7 is the precursor of the SKA pathfinder MeerKAT, which is under construction. The short baselines and low system temperature of the telescope make it sensitive to large scale low surface brightness emission. The new observations with KAT-7 allow the measurement of the rotation curve of NGC 3109 out to 32', doubling the angular extent of existing measurements. A total HI mass of 4.6 x 10^8 Msol is derived, 40% more than what was detected by the VLA observations. The observationally motivated pseudo-isothermal dark matter (DM) halo model can reproduce very well the observed rotation curve but the cosmologically motivated NFW DM model gives a much poorer fit to the data. While having a more accurate gas distribution has reduced the discrepancy between the observed RC and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense of having to use unrealistic mass-to-light ratios for the stellar disk and/or very large values for the MOND universal constant a0. Different distances or HI contents cannot reconcile MOND with the observed kinematics, in view of the small errors on those two quantities. As for many slowly rotating gas-rich galaxies studied recently, the present result for NGC 3109 continues to pose a serious challenge to the MOND theory.Comment: 25 pages, 20 figures, accepted for publication in Astronomical Journa

    Evaluatie Opvangbeleid 2005-2008 overwinterende ganzen en smienten. Deelrapport 10. Hebben overwinterende ganzen invloed op de weidevogelstand?

    Get PDF
    Dit rapport richt zich op de vraag of de sterk toegenomen dichtheden ganzen in bepaalde gebieden mede verantwoordelijk kunnen zijn voor de achteruitgang van de weidevogels ter plekke. Gebruik makend van data verzameld in de periode 1990-2005 in het kader van het weidevogelmeetnet en de watervogeltellingen in ganzentelgebieden werd onderzocht in hoeverre gebieden met hoge dichtheden ganzen overlappen met gebieden met hoge dichtheden weidevogels. De effecten van hoge dichtheden overwinterende ganzen op in Nederland broedende weidevogels lijken verwaarloosbaar of positief. Resultaten van onderzoek van SOVON en Alterr

    New Periodic 6.7 GHz Class II Methanol Maser Associated with G358.460-0.391

    Get PDF
    Eight new class II methanol masers selected from the 6.7 GHz Methanol Multibeam survey catalogues I and II were monitored at 6.7 GHz with the 26m Hartebeesthoek Radio Astronomy Observatory (HartRAO) radio telescope for three years and seven months, from February 2011 to September 2014. The sources were also observed at 12.2 GHz and two were sufficiently bright to permit monitoring. One of the eight sources, namely G358.460-0.391, was found to show periodic variations at 6.7 GHz. The period was determined and tested for significance using the Lomb-Scargle, epoch-folding and Jurkevich methods, and by fitting a simple analytic function. The best estimate for the period of the 6.7 GHz class II methanol maser line associated with G358.460-0.391 is 220.0 ±\pm 0.2 day.Comment: 8 pages, 11 figures, accepted for publication in MNRAS. The appendix of 4 pages (with 16 figures) will be published as online versio

    A Strong Jet Signature in the Late-Time Lightcurve of GW170817

    Get PDF
    We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telescope and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.Comment: 11 pages, 3 figures, 3 tables. Accepted for publication in ApJ Letter

    On the methanol masers in G9.62+0.20E and G188.95+0.89

    Full text link
    A comparison between the observed light curves of periodic masers in G9.62+0.20E and G188.95+0.89 and the results of a simple colliding-wind binary model is made to establish whether the flaring and other time-dependent behaviour of the masers in these two star forming regions can be ascribed to changes in the environment of the masers or in the continuum emission from parts of the background \ion{H}{2} region. It is found that the light curves of widely different shape and amplitude in these two objects can be explained within the framework of a periodic pulse of ionizing radiation that raises the electron density in a volume of partially ionized gas against which the masers are projected. It is also shown that the decay of the 11.405 \kmps maser in G188.95+0.89 can be explained very well in terms of the recombination of the ionized gas against which the maser is projected while it would require very special conditions to explain it in terms of changes in environment of the maser. We conclude that for G9.62+0.20E and G188.95+0.89 the observed changes in the masers are most likely due to changes in the background free-free emission which is amplified by the masers.Comment: 12 pages, 4 figure

    How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

    Full text link
    General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region hcHII with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.Comment: 8 pages, 4 figures, invited presentation at IAU242 "Astrophysical Masers and their environments

    A European tool for usual intake distribution estimation in relation to data collection by EFSA

    Get PDF
    The present document has been produced and adopted by the bodies identified above as author(s). In accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the author(s) in the context of a grant agreement between the European Food Safety Authority and the author(s). The present document is published complying with the transparency principle to which the Authority is subject. It cannot be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors
    corecore