159 research outputs found

    Chemical composition of outdoor airborne particles at urban schools and possible implications for the air quality in classrooms

    Get PDF
    Vehicle emissions are a significant source of fine particles (Dp < 2.5 ”m) in an urban environment. These fine particles have been shown to have detrimental health effects, with children thought to be more susceptible. Vehicle emissions are mainly carbonaceous in nature, and carbonaceous aerosols can be defined as either elemental carbon (EC) or organic carbon (OC). EC is a soot-like material emitted from primary sources while OC fraction is a complex mixture of hundreds of organic compounds from either primary or secondary sources (Cao et al., 2006). Therefore the ratio of OC/EC can aid in the identification of source. The purpose of this paper is to use the concentration of OC and EC in fine particles to determine the levels of vehicle emissions in schools. It is expected that this will improve the understanding of the potential exposure of children in a school environment to vehicle emissions

    Past 140-year environmental record in the northern South China Sea: Evidence from coral skeletal trace metal variations

    Get PDF
    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. (C) 2013 Elsevier Ltd. All rights reserved

    Preliminary results on the characterisation of organic aerosols in urban schools by Aerosol Mass Spectrometry

    Get PDF
    Vehicle emissions have been linked to detrimental health effects with children thought to be more susceptible (See e.g., Ryan et al 2005). In an urban environment a major source of organic aerosols (OA) are vehicle emissions. The ambient concentration of OA is dynamic in nature and the use of an aerosol mass spectrometer can achieve the necessary temporal resolution to capture the daily variation of OA (Jimenez et al 2009). Currently there is a limited understanding of effects of long term exposure to traffic emissions on children’s health. In the present study, we used an aerosol mass spectrometer to monitor OA and determine children’s potential exposure at school to traffic emissions.In this paper, we present the preliminary results of this investigation. The study is a part of a larger project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants, known as UPTECH (www.ilaqh.qut.edu.au/Misc/ UPTECH%20Home.htm)

    Reflections on chemistry sessions at the 2012 Healthy Buildings Conference

    No full text
    Scores of well-researched individual papers and posters specifically or indirectly addressing the occurrence, measurement or exposure impacts of chemicals in buildings were presented at 2012 Healthy Buildings Conference. Many of these presentations offered advances in sampling and characterisation of chemical pollutants while others extended the frontiers of knowledge on the emission, adsorption, risk, fate and compositional levels of chemicals in indoor and outdoor microenvironments. Several modelled or monitored indoor chemistry, including processes that generated secondary pollutants. This article provides an overview of the state of knowledge on healthy buildings based on papers presented in chemistry sessions at Healthy Buildings 2012 (HB2012) Conference. It also suggests future directions in healthy buildings research

    Oxidations of hypophosphorus and arsenious acids by 12-tungstocobaltate(III) anion in aqueous solution

    No full text
    The kinetics of oxidation of hypophosphorus and arsenious acids by 12-tungstocobaltate(III) anion have been studied in aqueous hydrochloric acid at constant ionic strength (I=2.0 M NaCl). The reactions obey the second-order rate law d[oxidant]/dt=2k [oxidant] [reductant]. Variation of [H+] in the range 0.10-1.50 M has no effect on the rates. Possible mechanistic interpretations of these observations are suggested

    Ultra-trace detection of diagnostically important biomarkers using functionalised-Surface Enhanced Raman Spectroscopy (SERS)

    Get PDF
    Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform

    Volatile organic compounds in indoor environments

    No full text
    This chapter provides an overview of the types, sources and current techniques for characterising volatile organic compounds (VOC) in nonindustrial indoor environments. It reviews current knowledge on the levels of volatile organic compounds in indoor environments, discusses concepts for regulating indoor levels of volatile organic compounds and appraises current efforts to understand the links between VOCs and building-related health/sensory effects. It also provides an up-to-date outline of new trends in and perspectives for indoor air VOC research.</p
    • 

    corecore