10 research outputs found

    Exciton G Factor Of Type-ii Inp Gaas Single Quantum Dots

    Get PDF
    We investigated the magneto-optical properties of type-II InP GaAs quantum dots using single-dot spectroscopy. The emission energy from individual dots presents a quadratic diamagnetic shift and a linear Zeeman splitting as a function of magnetic fields up to 10 T, as previously observed for type-I systems. We analyzed the in-plane localization of the carriers using the diamagnetic shift results. The values for the exciton g factor obtained for a large number of a InP GaAs dots are mainly constant, independent of the emission energy, and therefore, of the quantum dot dimensions. The result is attributed to the weak confinement of the holes in type-II InP GaAs quantum dots. © 2006 The American Physical Society.733Toda, Y., Shinomori, S., Suzuki, K., Arakawa, Y., (1998) Appl. Phys. Lett., 73, p. 517. , APPLAB 0003-6951 10.1063/1.121919Bayer, M., Kuther, A., Schäfer, F., Reithmaier, J.P., Forchel, A., (1999) Phys. Rev. B, 60, p. 8481. , PRBMDO. 0163-1829. 10.1103/PhysRevB.60.R8481Sugisaki, M., Ren, H.-W., Nishi, K., Sugou, S., Okuno, T., Masumoto, Y., (1998) Physica B, 256-258, p. 169. , PHYBE3 0921-4526Kotlyar, R., Reinecke, T.L., Bayer, M., Forchel, A., (2001) Phys. Rev. B, 63, p. 085310. , PRBMDO 0163-1829 10.1103/PhysRevB.63.085310Ribeiro, E., Govorov, A.O., Carvalho Jr., W., Medeiros-Ribeiro, G., (2004) Phys. Rev. Lett., 92, p. 126402. , PRLTAO 0031-9007 10.1103/PhysRevLett.92.126402Janssens, K.L., Partoens, B., Peeters, F.M., (2002) Phys. Rev. B, 66, p. 075314. , PRBMDO 0163-1829 10.1103/PhysRevB.66.075314Kalameitsev, A.B., Kovalev, V.M., Govorov, A.O., (1989) JETP Lett., 68, p. 669. , JTPLA2 0021-3640 10.1134/1.567926Sugisaki, M., Ren, H.W., Nair, S.V., Nishi, K., Masumoto, Y., (2002) Phys. Rev. B, 66, p. 235309. , PRBMDO 0163-1829 10.1103/PhysRevB.66.235309Godoy, M.P.F., Nakaema, M.K.K., Iikawa, F., Carvalho Jr., W., Ribeiro, E., Gobby, A.L., (2004) Rev. Sci. Instrum., 75, p. 1947. , RSINAK 0034-6748 10.1063/1.1753090Walck, S.N., Reinecke, T.L., (1998) Phys. Rev. B, 57, p. 9088. , PRBMDO 0163-1829 10.1103/PhysRevB.57.9088Laheld, U.E.H., Pedersen, F.B., Hemmer, P.C., (1993) Phys. Rev. B, 48, p. 4659. , PRBMDO 0163-1829 10.1103/PhysRevB.48.4659Bastard, G., Mendez, E.E., Chang, L.L., Esaki, L., (1982) Phys. Rev. B, 26, p. 1974. , PRBMDO 0163-1829 10.1103/PhysRevB.26.1974Nakaoka, T., Saito, T., Tatebayashi, J., Arakawa, Y., (2004) Phys. Rev. B, 70, p. 235337. , PRBMDO 0163-1829 10.1103/PhysRevB.70.235337Yugova, I.A., Ya. Gerlovin, I., Davydov, V.G., Ignatiev, I.V., Kozin, I.E., Ren, H.W., Sugisaki, M., Masumoto, Y., (2002) Phys. Rev. B, 66, p. 235309. , PRBMDO 0163-1829 10.1103/PhysRevB.66.235309Willmann, F., Suga, S., Dreybrodt, W., Cho, K., (1974) Solid State Commun., 14, p. 783. , SSCOA4 0038-1098Landi, S.M., Tribuzy, C.V.B., Souza, P.L., Butendeich, R., Bittencourt, A.C., Marques, G.E., (2003) Phys. Rev. B, 67, p. 085304. , PRBMDO 0163-1829 10.1103/PhysRevB.67.08530

    Optical And Structural Investigation Of In 1-xga Xp Free-standing Microrods

    Get PDF
    We present a structural and optical characterization of scepterlike micrometer-sized free-standing structures, composed of a long InGaP rod with a metallic sphere on its top, grown on polycrystalline InP substrates. In contrast to the conventional vapor-liquid-solid growth method, no catalyst was deposited on the substrate. Instead, metallic In liberated from the InP substrate by phosphor evaporation works as the catalyst metal. We performed Raman scattering, photoluminescence spectroscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy measurements on individual structures. The alloy composition measured by microscopic techniques is in agreement with the values obtained by the optical measurements considering that the rod is strain free. The InGaP rods present essentially constant Ga composition within a fluctuation of ∼10% and efficient optical emission. We also observed a marked increase in the Raman-scattering signal at rod positions near the metallic sphere (the "neck"), which was attributed to a surface-enhanced Raman-scattering effect. Our results demonstrate the possibility of using InGaP rods for optical device applications. © 2005 American Institute of Physics.985Chen, C.-C., Yeh, C.-C., (2000) Adv. Mater. (Weinheim, Ger.), 12, p. 738Gupta, R., Xiong, Q., Mahan, G.D., Eklund, P.C., (2003) Nano Lett., 3, p. 1745Chen, C.-C., (2001) J. Am. Chem. Soc., 123, p. 2791Krishnamachari, U., Borgstrom, M., Ohlsson, B.J., Panev, N., Samuelson, L., Seifert, W., Larsson, M.W., Wallenberg, L.R., (2004) Appl. Phys. Lett., 85, p. 2077Ye, D.-X., Karabacak, T., Lim, B.K., Wang, G.-C., Lu, T.-M., (2004) Nanotechnology, 15, p. 817Wang, R.P., Xu, G., Jin, P., (2004) Phys. Rev. B, 69, p. 113303Jie, J., (2004) J. Phys. Chem. B, 108, p. 8249Hu, J., Odom, T.W., Lieber, C.M., (1999) Acc. Chem. Res., 32, p. 435Wagner, R.S., Ellis, W.C., (1964) Appl. Phys. Lett., 4, p. 89Park, W.I., Kim, D.H., Jung, S.-W., Yi, G.-C., (2002) Appl. Phys. Lett., 80, p. 4232Morales, A.M., Lieber, C.M., (1998) Science, 279, p. 208Choi, H.-J., (2003) J. Phys. Chem. B, 107, p. 8721Sacilotti, M., Decobert, J., Sik, H., Post, G., Dumas, C., Viste, P., Patriarche, G., (2004) J. Cryst. Growth, 272, p. 198Gudisken, M., Lieber, Ch., (2000) J. Am. Chem. Soc., 122, p. 8801Gudisken, M., Wang, J., Lieber, Ch., (2001) J. Phys. Chem. B, 105, p. 4062Kato, T., Matsumoto, T., Ishida, T., (1988) Jpn. J. Appl. Phys., Part 1, 27, p. 983Zachau, M., Masselink, W.T., (1992) Appl. Phys. Lett., 60, p. 2098Beserman, R., Hirlimann, C., Balkanski, M., (1976) Solid State Commun., 20, p. 485Abdelouhab, R.M., Braunstein, R., Bärner, K., Rao, M.A., Kroemer, H., (1989) J. Appl. Phys., 66, p. 787Jusserand, B., Slempkes, S., (1984) Solid State Commun., 49, p. 95Xu, H., Aizpurua, J., Käll, M., Apell, P., (2000) Phys. Rev. e, 62, p. 4318Suzuki, M., Niidome, Y., Terasaki, N., Inoue, K., Kuwahara, Y., Yamada, S., (2004) Jpn. J. Appl. Phys., Part 2, 43, p. 554Mahan, G.D., Gupta, R., Xiong, Q., Adu, C.K., Eklund, P.C., (2003) Phys. Rev. B, 68, p. 073402Gordon, B.E., Lee, A.S.W., Thompson, D.A., Robinson, B.J., (2003) Semicond. Sci. Technol., 18, p. 782Sacilotti, M., Masut, R.A., Roth, A.P., (1986) Appl. Phys. Lett., 48, p. 481Deibuk, V.G., (2003) Semiconductors, 37, p. 1151Schuler, O., Wallart, X., Mollot, F., (1999) J. Cryst. Growth, 201, p. 280Wei, S.-H., Ferreira, L.G., Zunger, A., (1990) Phys. Rev. B, 41, p. 8240Vavilova, L.S., (1998) Semiconductors, 32, p. 590Lee, R.T., Fetzer, C.M., Jun, S.W., Chapman, D.C., Shurtleff, J.K., Stringfellow, G.B., Ok, Y.W., Seong, T.Y., (2001) J. Cryst. Growth, 233, p. 490Bernussi, A.A., Carvalho Jr., W., Franco, M.K.K.D., (2001) J. Appl. Phys., 89, p. 489

    Carrier Dynamics In Stacked Inpgaas Quantum Dots

    Get PDF
    We investigated two stacked layers of InPGaAs type-II quantum dots by transmission electron microscopy and optical spectroscopy. The results reveal that InP quantum dots formed in two quantum dot layers are more uniform than those from a single layer structure. The thermal activation energies as well as the photoluminescence decays are rather independent of the separation between quantum dot layers and the presence of the second layer. The quantum dot optical emission persists for thermal activation energy larger than the calculated exciton binding energy. The photoluminescence decay is relatively fast for type-II alignment. © 2007 American Institute of Physics.9112Goldstein, L., Glas, F., Marzin, M.J.Y., Charasse, N., Le Roux, G., (1985) Appl. Phys. Lett., 47, p. 1099Xie, Q., Madhkar, A., Chen, P., Kobayashi, N., (1995) Phys. Rev. Lett., 75, p. 2542Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Kirstaedter, N., Böhmer, J., Schmidt, O., Bimberg, D., Heydenreich, J., (1996) Phys. Rev. B, 54, p. 8743Solomon, G.S., Trezza, J.A., Marchall, A.F., Harris Jr., J.S., (1996) Phys. Rev. Lett., 76, p. 952Sugiyama, Y., Nakata, Y., Futatsugi, T., Sugawara, M., Awano, Y., Yokoyama, N., (1996) Jpn. J. Appl. Phys., Part 2, 36, p. 158Schmidt, O.G., Kienzie, O., Hao, Y., Eberl, K., (1999) Appl. Phys. Lett., 74, p. 1272Chang, W.-H., Chen, W.-Y., Chou, A.-T., Hsu, T.-M., Chen, P.-S., Pei, Z., Lai, L.-S., (2003) J. Appl. Phys., 93, p. 4999Susuki, K., Hogg, R.A., Arakawa, Y., (1999) J. Appl. Phys., 85, p. 8349Sun, C.-K., Wang, G., Bowers, J.E., Brar, B., Blank, H.-R., Kroemer, H., Pilkuhn, M.H., (1996) Appl. Phys. Lett., 68, p. 1543Hatami, F., Grundmann, M., Ledentsov, N.N., Heinrichsdorff, F., Heitz, R., Böhrer, J., Bimberg, D., Alferov Zh., I., (1998) Phys. Rev. B, 57, p. 4635De Godoy, M.P.F., Gomes, P.F., Nakaema, M.K.K., Iikawa, F., Brasil, M.J.S.P., Caetano, R.A., Madureira, J.R., Bittencourt, A.C.R., (2006) Phys. Rev. B, 73, p. 033309Wang, B., Chua, S.-J., (2001) Appl. Phys. Lett., 78, p. 628Nakaema, M.K.K., Iikawa, F., Brasil, M.J.S.P., Ribeiro, E., Medeiros-Ribeiro, G., Carvalho Jr., W., Maialle, M.Z., Degani, M.H., (2002) Appl. Phys. Lett., 81, p. 2743Zundel, M.K., Specht, P., Eberl, K., Jin-Phillipp, N.Y., Phillipp, F., (1997) Appl. Phys. Lett., 71, p. 2972Sanguinetti, S., Henini, M., Grassi Alessi, M., Capizzi, M., Frigeri, P., Franchi, S., (1999) Phys. Rev. B, 60, p. 827

    Valence Band Anti-crossing In Gaas/algaas Quantum Wells Under Tensile Biaxial Strain

    No full text
    We present here the study of the effects of the biaxial tensile strain on the optical properties in GaAs/AlGaAs quantum wells using low-temperature photoluminescence and photoluminescence excitation techniques. We used a pressure cell that permits to apply a biaxial tensile strain on an epitaxial film up to ∼ 0.3 % (for GaAs). The strain was determined by the energy shift of the excitonic recombination of the own GaAs buffer layer of the sample. The results of the optical measurements show clear the strain effects on the light and heavy hole excitons transitions and also show their anti-crossing. This new results show that this system is appropriated to study optical properties involving resonant phenomena in semiconductor quantum wells. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.13547550Tudury, H.A.P., Nakaema, M.K.K., Iikawa, F., Brum, J.A., Ribeiro, E., Carvalho Jr., W., Bernussi, A.A., Gobbi, A.L., (2001) Phys. Rev. B, 64, p. 153301Thewald, M.L.W., Harrison, D.A., Heinhart, C.F., Wok, J.A., (1997) Phys. Rev. Lett., 79, p. 269Iikawa, F., Cerdeira, F., Vazquez-Lopes, C., Motisuke, P., Sacilotti, M.A., Masut, R.A., Roth, A.P., (1988) Phys. Rev. B, 38, p. 8473Landoldt-Börnstein, (1982) Numerical Data and Functional Relationships in Science and Technology, III-17A, p. 218. , edited by O. Madelung Springer-Verlag, Berlin, New SeriesMichler, P., Hangleiter, A., Moritz, A., Fuchs, G., Härle, V., Scholz, F., (1993) Phys. Rev. B, 48, p. 11991Gershoni, D., Vandenberg, J.M., Hamm, R.A., Temkin, H., Panish, M.B., (1987) Phys. Rev. B, 36, p. 1320Triques, A.L.C., Brum, J.A., (1994) Proc. of 22nd International Conference on the Physics of Semiconductors, 2, p. 1328. , Vancouver, edited by D. J. Lockwood World Scientifi

    Magneto-optics From Type-ii Single Quantum Dots

    No full text
    We investigated single InP quantum dots embedded in GaAs using micro-photoluminescence as a function of the excitation intensity. InP/GaAs dots exhibit a type-II band alignment, which leads to a spatial separation of the carriers. The effect of a magnetic field on these type-II quantum dots were also investigated through micro-photoluminescence measurements. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.13543546Lelong, Ph., Suzuki, K., Bastard, G., Sakaki, H., Arakawa, Y., (2000) Physica E, 7, p. 93Sugisaki, M., Ren, H.-W., Nair, S.V., Nishi, K., Masumoto, U., (2002) Phys. Rev. B, 66, p. 235309Sugisaki, M., Ren, H.-W., Nishi, K., Sugou, S., Okuno, R., Masumoto, U., (1998) Physica B, 256, p. 169Chen, Y., Gil, B., Mathieu, H., Lascaray, J.P., (1987) Phys. Rev. B, 36, p. 151

    Exciton Binding Energy In Type Ii Quantum Dots

    No full text
    We investigated the optical properties of self-assembled InP/GaAs quantum dots using continuous-wave and time-resolved photoluminescence spectroscopy. The thermal activation energy, which is directly related to the exciton binding energy in this system, was obtained by photoluminescence measurements as a function of temperature. We obtained thermal activation energies of 6-9 meV for undoped quantum dots and 13 meV for the modulation-doped sample. Those values are in good agreement with calculated results. The dots presented a recombination time of- 0.8-1.1 ns, which is surprisingly small for a type-II system. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.42385388Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., Deppe, D.G., (1998) Appl. Phys. Lett, 73 (18), p. 2564Schedelbeck, G., Wegscheider, W., Bichler, M., Abstreiter, G., (1997) Science, 278, p. 1792Lelong, P., Suzuki, K., Bastard, G., Sakaki, H., Arakawa, Y., (2000) Physica E, 7, p. 393Madureira, J.R., de Godoy, M.P.F., Brasil, M.J.S.P., Iikawa, F., to be publishedde Godoy, M.P.F., Gomes, P.F., Nakaema, M.K.K., Caetano, R.A., Iikawa, F., Brasil, M.J.S.P., Bortoleto, J.R.R., Marques, G.E., (2006) Phys. Rev. B, 73 (3), p. 33309Sanguinetti, S., Henini, M., Alessi, M.G., Capizzi, M., Frigeri, P., Franchi, S., (1999) Phys. Rev. B, 60 (11), p. 8276Fafard, S., Raymond, S., Wang, G., Leon, R., Leonard, D., Charbonneau, S., Merz, J.L., Bowers, J.E., (1996) Surf. Sci, 361-362, p. 778Hatami, F., Grundmann, M., Ledentsov, N.N., Heinrichsdorff, F., Heitz, R., Bohrer, J., Bimberg, D., Alferov, Z.I., (1998) Phys. Rev. B, 57 (8), p. 4635Paillard, M., Marie, X., Vanette, E., Amand, T., Kalevich, V.K., Kovsh, A.R., Zhukov, A.E., Ustinov, V.M., (2000) Appl. Phys. Lett, 76, p. 7

    Structural And Optical Properties Of Inp Quantum Dots Grown On Gaas (001)

    No full text
    We present structural and optical properties of type-II self-assembled InP/GaAs quantum dots using different techniques. The results reveal that the uncapped InP dots present an efficient optical emission and are partially relaxed: strain relaxation increases with the amount of InP deposited. The photoluminescence spectra show two optical emission bands associated to the quantum dots, in agreement with the bi-modal dot-height distribution observed by atomic force microscopy. We observed distinct photoluminescence results for uncapped and capped samples, which are mainly attributed to surface state and strain relaxation effects. A remarkable result is the large blue shift of the optical emission band from uncapped sample as compared to capped one for increasing excitation intensities. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.42238240Pistol, M.-E., Carlsson, N., Persson, C., Seifert, W., Samuelson, L., (1995) Appl. Phys. Lett, 67, p. 1438Persson, J., Hakanson, U., Johansson, M.K.J., Samuelson, L., Pistol, M.-E., (2005) Phys. Rev. B, 72, p. 085302Nakaema, M.K.K., Iikawa, F., Brasil, M.J.S.P., Ribeiro, E., Medeiros-Ribeiro, G., Carvalho Jr., W., Maialle, M.Z., Degani, M.H., (2002) Appl. Phys. Lett, 81, p. 2743de Godoy, M.P.F., Gomes, P.F., Nakaema, M.K.K., Caetano, R.A., Iikawa, F., Brasil, M.J.S.P., Bortoleto, J.R.R., Marques, G.E., (2006) Phys. Rev. B, 73, p. 33309Bortoleto, J.R.R., Gutiérrez, H.R., Cotta, M.A., Bettini, J., (2005) Appl. Phys. Lett, 87, p. 13105Casey Jr., H.G., Buehler, E., (1977) Appl. Phys. Lett, 30, p. 247Yablonovitch, E., Bhat, R., Zah, C.E., Gmitter, T.J., Koza, M.A., (1992) Appl. Phys. Lett, 60, p. 37
    corecore