71 research outputs found

    Spéciation guidée par l'environnement‎ : interactions sur des périodes évolutionnaires de communautés de plantes artificielles

    Get PDF
    Depuis des décades, les chercheurs en Vie Artificielle on créé une pléthore de créatures en utilisant de multiples schémas d’encodage, capacités motrices et aptitudes cognitives. Un motif récurrent, cependant, est que la focalisation est centrée sur les individus à évoluer, ne laissant que peu de place aux variations environnementales. Dans ce travail, nous argumentons que des contraintes abiotiques plus complexes pourraient diriger un processus évolutionnaire vers des régions de l’espace génétique plus robustes and diverses. Nous avons conçu un modèle morphologique complexe, basé sur les graphes orientés de K. Sims, qui repose sur le moteur physique Bullet pour la précision et utilise des contraintes à 6 Degrés de Liberté pour connecter les paires d’organes. Nous avons ainsi évolué un panel de plantes à l’aspect naturel qui devaient survivre malgré des niveaux de ressources variables induits par une source de lumière mobile et des motifs de pluies saisonnières. En plus de cette expérience, nous avons aussi obtenu une meilleure croissance verticale en ajoutant une contrainte biotique artificielle sous la forme de brins d’herbe statiques. La complexité de ce modèle, cependant, ne permettait pas la mise a l’échelle d’une évolution de populations et a donc été réduit dans l’expérience suivante, notamment en supprimant le moteur physique. Cela nous a amené à l’exploration de la co-évolution de populations composées d’une unique espèce et ayant la capacité de se reproduire de manière autonome grâce à notre Bail-Out Crossover (Croisement avec Désistement). Bien que les populations résultantes n’ont pas démontré un grand intérêt pour cette aptitude, elles ont néanmoins fourni d’importantes informations sur les mécanismes d’auto-reproduction. Ceux-ci ont été mis en action dans un second modèle inspiré des travaux de Bornhofen. Grâce à sa légèreté, cela nous a permis de traiter non seulement de plus grandes populations (de l’ordre de milliers d’individus) mais aussi de plus longues périodes évolutionnaires (100 années, approximativement 5000 générations). Notre première expérience avec ce modèle s’est concentrée sur la possibilité de reproduire des cas d’école de spéciation (allopatrique, parapatrique, péripatrique) sur cette plate-forme. Grâce à APOGet, une nouvelle procédure de regroupement pour l’extraction en parallèle d’espèces à partir d’un arbre généalogique, nous avons pu affirmer que le système était effectivement capable de spéciation spontanée. Cela nous a conduit à une dernière expérience dans laquelle l’environnement était contrôlé par de la Programmation Génétique Cartésienne (CGP), permettant ainsi une évolution automatique d’une population et des contraintes abiotiques auxquelles elle était confrontée. Par une variation du traditionnel algorithme 1 + λ nous avons obtenu 10 populations finales qui ont survécu à de brutales et imprévisibles variations environnementales. En les comparant à un groupe contrôle c pour lequel les contraintes ont été maintenues faibles et constantes, le groupe évolué e a montré des performances mitigées: dans les deux types de tests, une moitié de e surpassait c qui, à son tour, surpassait la moitié restante de e. Nous avons aussi trouvé une très forte corrélation entre les chutes catastrophiques de population et la performance des évolutions correspondantes. Il en résulte que l’évolution de population dans des environnements hostiles et dynamiques n’est pas une panacée bien que ces expériences en démontrent le potentiel et souligne le besoin d’études ultérieures plus approfondies.Artificial Life researchers have, for decades, created a plethora of creatures using numerous encoding schemes, motile capabilities and cognitive capacities. One recurring pattern, however, is that focus is solely put on the evolved individuals, with very limited environmental variations. In this work, we argue that more complex abiotic constraints could drive an evolutionary process towards more robust and diverse regions of the genetic space. We started with a complex morphogenetic model, based on K. Sims’ directed graphs, which relied on the Bullet physics engine for accuracy and used 6Degrees of Freedom constraints to connect pairs of organs. We evolved a panel of natural-looking plants which had to cope with varying resource levels thanks to a mobile light source and seasonal rain patterns. In addition to this experiment, we also obtained improved vertical growth by adding an artificialbiotic constraint in the form of static grass blades. However, the computational cost of this model precluded scaling to a population-level evolution and was reduced in the successive experiment, notably by removing the physical engine. This led to the exploration of co-evolution on single-species populations which, thanks to our Bail-Out Crossover (BOC) algorithm, were able to self-reproduce. The resulting populations provided valuable insight into the mechanisms of self-sustainability. These were put to action in an even more straightforward morphogenetic model inspired by the work of Bornhofen. Due to its light weightness, this allowed for both larger populations (up to thousands of individuals) and longer evolutionary periods (100 years, roughly 5K generations). Our first experiment on this model tested whether text-book cases of speciation could be reproduced in our framework. Such positive results were observed thanks to the species monitoring capacities of APOGeT, a novel clustering procedure we designed for online extraction of species from a genealogic tree. This drove us to a final experiment in which the environment was controlled through Cartesian Genetic Programming thus allowing the automated evolution of both the population and abiotic constraints it is subjected to. Through a variation of the traditional1 + λ algorithm, we obtained 10 populations (evolved group e) which had endured in harsh and unpredictable environments. These were confronted to a control group c, in which the constraints were kept mild and constant, on two types of colonization evaluation. Results showed that the evolved group was heterogeneous with half of e consistently outperforming members of c and the other half exhibiting worse performances than the baseline. We also found a very strong positive correlation between catastrophic drops in population level during evolution with the robustness of their final representatives. From this work, two conclusions can be drawn. First, though the need to fight on both the abiotic and biotic fronts can lead to worse performances, more robust individuals can be found in reasonable time-frames. Second, the automated co-evolution of populations and their environments is essential in exploring counter-intuitive, yet fundamental, dynamics both in biological and artificial life

    Spéciation guidée par l'environnement‎ : interactions sur des périodes évolutionnaires de communautés de plantes artificielles

    Get PDF
    Depuis des décades, les chercheurs en Vie Artificielle on créé une pléthore de créatures en utilisant de multiples schémas d’encodage, capacités motrices et aptitudes cognitives. Un motif récurrent, cependant, est que la focalisation est centrée sur les individus à évoluer, ne laissant que peu de place aux variations environnementales. Dans ce travail, nous argumentons que des contraintes abiotiques plus complexes pourraient diriger un processus évolutionnaire vers des régions de l’espace génétique plus robustes and diverses. Nous avons conçu un modèle morphologique complexe, basé sur les graphes orientés de K. Sims, qui repose sur le moteur physique Bullet pour la précision et utilise des contraintes à 6 Degrés de Liberté pour connecter les paires d’organes. Nous avons ainsi évolué un panel de plantes à l’aspect naturel qui devaient survivre malgré des niveaux de ressources variables induits par une source de lumière mobile et des motifs de pluies saisonnières. En plus de cette expérience, nous avons aussi obtenu une meilleure croissance verticale en ajoutant une contrainte biotique artificielle sous la forme de brins d’herbe statiques. La complexité de ce modèle, cependant, ne permettait pas la mise a l’échelle d’une évolution de populations et a donc été réduit dans l’expérience suivante, notamment en supprimant le moteur physique. Cela nous a amené à l’exploration de la co-évolution de populations composées d’une unique espèce et ayant la capacité de se reproduire de manière autonome grâce à notre Bail-Out Crossover (Croisement avec Désistement). Bien que les populations résultantes n’ont pas démontré un grand intérêt pour cette aptitude, elles ont néanmoins fourni d’importantes informations sur les mécanismes d’auto-reproduction. Ceux-ci ont été mis en action dans un second modèle inspiré des travaux de Bornhofen. Grâce à sa légèreté, cela nous a permis de traiter non seulement de plus grandes populations (de l’ordre de milliers d’individus) mais aussi de plus longues périodes évolutionnaires (100 années, approximativement 5000 générations). Notre première expérience avec ce modèle s’est concentrée sur la possibilité de reproduire des cas d’école de spéciation (allopatrique, parapatrique, péripatrique) sur cette plate-forme. Grâce à APOGet, une nouvelle procédure de regroupement pour l’extraction en parallèle d’espèces à partir d’un arbre généalogique, nous avons pu affirmer que le système était effectivement capable de spéciation spontanée. Cela nous a conduit à une dernière expérience dans laquelle l’environnement était contrôlé par de la Programmation Génétique Cartésienne (CGP), permettant ainsi une évolution automatique d’une population et des contraintes abiotiques auxquelles elle était confrontée. Par une variation du traditionnel algorithme 1 + λ nous avons obtenu 10 populations finales qui ont survécu à de brutales et imprévisibles variations environnementales. En les comparant à un groupe contrôle c pour lequel les contraintes ont été maintenues faibles et constantes, le groupe évolué e a montré des performances mitigées: dans les deux types de tests, une moitié de e surpassait c qui, à son tour, surpassait la moitié restante de e. Nous avons aussi trouvé une très forte corrélation entre les chutes catastrophiques de population et la performance des évolutions correspondantes. Il en résulte que l’évolution de population dans des environnements hostiles et dynamiques n’est pas une panacée bien que ces expériences en démontrent le potentiel et souligne le besoin d’études ultérieures plus approfondies.Artificial Life researchers have, for decades, created a plethora of creatures using numerous encoding schemes, motile capabilities and cognitive capacities. One recurring pattern, however, is that focus is solely put on the evolved individuals, with very limited environmental variations. In this work, we argue that more complex abiotic constraints could drive an evolutionary process towards more robust and diverse regions of the genetic space. We started with a complex morphogenetic model, based on K. Sims’ directed graphs, which relied on the Bullet physics engine for accuracy and used 6Degrees of Freedom constraints to connect pairs of organs. We evolved a panel of natural-looking plants which had to cope with varying resource levels thanks to a mobile light source and seasonal rain patterns. In addition to this experiment, we also obtained improved vertical growth by adding an artificialbiotic constraint in the form of static grass blades. However, the computational cost of this model precluded scaling to a population-level evolution and was reduced in the successive experiment, notably by removing the physical engine. This led to the exploration of co-evolution on single-species populations which, thanks to our Bail-Out Crossover (BOC) algorithm, were able to self-reproduce. The resulting populations provided valuable insight into the mechanisms of self-sustainability. These were put to action in an even more straightforward morphogenetic model inspired by the work of Bornhofen. Due to its light weightness, this allowed for both larger populations (up to thousands of individuals) and longer evolutionary periods (100 years, roughly 5K generations). Our first experiment on this model tested whether text-book cases of speciation could be reproduced in our framework. Such positive results were observed thanks to the species monitoring capacities of APOGeT, a novel clustering procedure we designed for online extraction of species from a genealogic tree. This drove us to a final experiment in which the environment was controlled through Cartesian Genetic Programming thus allowing the automated evolution of both the population and abiotic constraints it is subjected to. Through a variation of the traditional1 + λ algorithm, we obtained 10 populations (evolved group e) which had endured in harsh and unpredictable environments. These were confronted to a control group c, in which the constraints were kept mild and constant, on two types of colonization evaluation. Results showed that the evolved group was heterogeneous with half of e consistently outperforming members of c and the other half exhibiting worse performances than the baseline. We also found a very strong positive correlation between catastrophic drops in population level during evolution with the robustness of their final representatives. From this work, two conclusions can be drawn. First, though the need to fight on both the abiotic and biotic fronts can lead to worse performances, more robust individuals can be found in reasonable time-frames. Second, the automated co-evolution of populations and their environments is essential in exploring counter-intuitive, yet fundamental, dynamics both in biological and artificial life

    Atmospheric neutron measurements with the SONTRAC science model

    Get PDF
    –The SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutron’s energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks

    Is tagging with visual implant elastomer a reliable technique for marking earthworms?

    Get PDF
    Visual implant elastomer (VIE) has recently been employed to investigate different aspects of earthworm ecology. However, a number of fundamental questions relating to the detection and positioning of the tag, its persistence and potential effects on earthworms remain unknown. Seven earthworm species belonging to three ecological groupings, with different pigmentation and burrowing behaviour, were tagged using different coloured VIE. External inspection after two days, one week and 1, 10 and 27 months were followed by preservation, dissection and internal inspection. Tags could be seen in living specimens to 27 months, and dissection revealed that in most cases they were lodged in the coelomic cavity, held in place by septa. However, over longer time periods (more than two years), the chlorogogenous tissue tended to bind to the tags and made external observation increasingly difficult. Migration of the VIE material towards the posterior of the earthworm and potential loss of the tag were only observed on rare occasions, and a recovery rate in excess of 98% was recorded. By introducing a reasonable amount of VIE into segments, just after the clitellum, this technique can become a valuable tool in earthworm ecology and life history studies, particularly in short-medium term laboratory and field experiments

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    Environment-Driven Speciation : long-term interactions in Artificial plant communities

    No full text
    Depuis des décades, les chercheurs en Vie Artificielle on créé une pléthore de créatures en utilisant de multiples schémas d’encodage, capacités motrices et aptitudes cognitives. Un motif récurrent, cependant, est que la focalisation est centrée sur les individus à évoluer, ne laissant que peu de place aux variations environnementales. Dans ce travail, nous argumentons que des contraintes abiotiques plus complexes pourraient diriger un processus évolutionnaire vers des régions de l’espace génétique plus robustes and diverses. Nous avons conçu un modèle morphologique complexe, basé sur les graphes orientés de K. Sims, qui repose sur le moteur physique Bullet pour la précision et utilise des contraintes à 6 Degrés de Liberté pour connecter les paires d’organes. Nous avons ainsi évolué un panel de plantes à l’aspect naturel qui devaient survivre malgré des niveaux de ressources variables induits par une source de lumière mobile et des motifs de pluies saisonnières. En plus de cette expérience, nous avons aussi obtenu une meilleure croissance verticale en ajoutant une contrainte biotique artificielle sous la forme de brins d’herbe statiques. La complexité de ce modèle, cependant, ne permettait pas la mise a l’échelle d’une évolution de populations et a donc été réduit dans l’expérience suivante, notamment en supprimant le moteur physique. Cela nous a amené à l’exploration de la co-évolution de populations composées d’une unique espèce et ayant la capacité de se reproduire de manière autonome grâce à notre Bail-Out Crossover (Croisement avec Désistement). Bien que les populations résultantes n’ont pas démontré un grand intérêt pour cette aptitude, elles ont néanmoins fourni d’importantes informations sur les mécanismes d’auto-reproduction. Ceux-ci ont été mis en action dans un second modèle inspiré des travaux de Bornhofen. Grâce à sa légèreté, cela nous a permis de traiter non seulement de plus grandes populations (de l’ordre de milliers d’individus) mais aussi de plus longues périodes évolutionnaires (100 années, approximativement 5000 générations). Notre première expérience avec ce modèle s’est concentrée sur la possibilité de reproduire des cas d’école de spéciation (allopatrique, parapatrique, péripatrique) sur cette plate-forme. Grâce à APOGet, une nouvelle procédure de regroupement pour l’extraction en parallèle d’espèces à partir d’un arbre généalogique, nous avons pu affirmer que le système était effectivement capable de spéciation spontanée. Cela nous a conduit à une dernière expérience dans laquelle l’environnement était contrôlé par de la Programmation Génétique Cartésienne (CGP), permettant ainsi une évolution automatique d’une population et des contraintes abiotiques auxquelles elle était confrontée. Par une variation du traditionnel algorithme 1 + λ nous avons obtenu 10 populations finales qui ont survécu à de brutales et imprévisibles variations environnementales. En les comparant à un groupe contrôle c pour lequel les contraintes ont été maintenues faibles et constantes, le groupe évolué e a montré des performances mitigées: dans les deux types de tests, une moitié de e surpassait c qui, à son tour, surpassait la moitié restante de e. Nous avons aussi trouvé une très forte corrélation entre les chutes catastrophiques de population et la performance des évolutions correspondantes. Il en résulte que l’évolution de population dans des environnements hostiles et dynamiques n’est pas une panacée bien que ces expériences en démontrent le potentiel et souligne le besoin d’études ultérieures plus approfondies.Artificial Life researchers have, for decades, created a plethora of creatures using numerous encoding schemes, motile capabilities and cognitive capacities. One recurring pattern, however, is that focus is solely put on the evolved individuals, with very limited environmental variations. In this work, we argue that more complex abiotic constraints could drive an evolutionary process towards more robust and diverse regions of the genetic space. We started with a complex morphogenetic model, based on K. Sims’ directed graphs, which relied on the Bullet physics engine for accuracy and used 6Degrees of Freedom constraints to connect pairs of organs. We evolved a panel of natural-looking plants which had to cope with varying resource levels thanks to a mobile light source and seasonal rain patterns. In addition to this experiment, we also obtained improved vertical growth by adding an artificialbiotic constraint in the form of static grass blades. However, the computational cost of this model precluded scaling to a population-level evolution and was reduced in the successive experiment, notably by removing the physical engine. This led to the exploration of co-evolution on single-species populations which, thanks to our Bail-Out Crossover (BOC) algorithm, were able to self-reproduce. The resulting populations provided valuable insight into the mechanisms of self-sustainability. These were put to action in an even more straightforward morphogenetic model inspired by the work of Bornhofen. Due to its light weightness, this allowed for both larger populations (up to thousands of individuals) and longer evolutionary periods (100 years, roughly 5K generations). Our first experiment on this model tested whether text-book cases of speciation could be reproduced in our framework. Such positive results were observed thanks to the species monitoring capacities of APOGeT, a novel clustering procedure we designed for online extraction of species from a genealogic tree. This drove us to a final experiment in which the environment was controlled through Cartesian Genetic Programming thus allowing the automated evolution of both the population and abiotic constraints it is subjected to. Through a variation of the traditional1 + λ algorithm, we obtained 10 populations (evolved group e) which had endured in harsh and unpredictable environments. These were confronted to a control group c, in which the constraints were kept mild and constant, on two types of colonization evaluation. Results showed that the evolved group was heterogeneous with half of e consistently outperforming members of c and the other half exhibiting worse performances than the baseline. We also found a very strong positive correlation between catastrophic drops in population level during evolution with the robustness of their final representatives. From this work, two conclusions can be drawn. First, though the need to fight on both the abiotic and biotic fronts can lead to worse performances, more robust individuals can be found in reasonable time-frames. Second, the automated co-evolution of populations and their environments is essential in exploring counter-intuitive, yet fundamental, dynamics both in biological and artificial life
    corecore