256 research outputs found

    Nanoflow liquid chromatography coupled to matrix-assisted laser desorption/ionization mass spectrometry: Sample preparation, data analysis, and application to the analysis of complex peptide mixtures

    Get PDF
    We report the development of a robust interface for off-line coupling of nano liquid chromatography (LC) to matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) and its application to the analysis of proteolytic digests of proteins, both isolated and in mixtures. The interface makes use of prestructured MALDI sample supports to concentrate the effluent to a small sample plate area and localize the MALDI sample to a predefined array, thereby enriching the analyte molecules and facilitating automated MALDI-MS analysis. Parameters that influence the preparation of MALDI samples from the LC effluent were evaluated with regard to detection sensitivity, spectra quality, and reproducibility of the method. A procedure for data processing is described. The presented nano LC MALDI-MS system allowed the detection of several peptides from a tryptic digest of bovine serum albumin, at analyzed amounts corresponding to one femtomole of the digested protein. For the identification of native proteins isolated from mouse brain by two-dimensional gel electrophoresis, nano LC MALDI-MS increased the number of detected peptides, thereby allowing identification of proteins that could not be identified by direct MALDI-MS analysis. The ability to identify proteins in complex mixtures was evaluated for the analysis of Escherichia coli 50S ribosomal subunit. Out of the 33 expected proteins, 30 were identified by MALDI tandem time of flight fragment ion fingerprinting

    Plant Mol Biol

    Get PDF
    Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms

    The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles

    Get PDF
    Variants in the triggering receptor expressed on myeloid cells 2 gene are linked with an increased risk of dementia, in particular the R47H^{het} triggering receptor expressed on myeloid cells 2 variant is linked to late-onset Alzheimer’s disease. Using human induced pluripotent stem cells-derived microglia, we assessed whether variations in the dynamics of exosome secretion, including their components, from these cells might underlie some of this risk. We found exosome size was not altered between common variant controls and R47H^{het} variants, but the amount and constitution of exosomes secreted were different. Exosome quantities were rescued by incubation with an ATP donor or with lipids via a phosphatidylserine triggering receptor expressed on myeloid cells 2 ligand. Following a lipopolysaccharide or phagocytic cell stimulus, exosomes from common variant and R47H^{heht} microglia were found to contain cytokines, chemokines, APOE and triggering receptor expressed on myeloid cells 2. Differences were observed in the expression of CCL22, IL-1β and triggering receptor expressed on myeloid cells 2 between common variant and R47H^{het} derived exosomes. Furthermore unlike common variant-derived exosomes, R47H^{het} exosomes contained additional proteins linked to negative regulation of transcription and metabolic processes. Subsequent addition of exosomes to stressed neurones showed R47H^{het}derived exosomes to be less protective. These data have ramifications for the responses of microglia in Alzheimer’s disease and may point to further targets for therapeutic intervention

    Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry

    Get PDF
    In the present study we show results of a large-scale proteome analysis of the recently sequenced plant Arabidopsis thaliana. On the basis of a previously published sequential protein extraction protocol, we prepared protein extracts from eight different A. thaliana tissues (primary leaf, leaf, stem, silique, seedling, seed, root, and inflorescence) and analysed these by two-dimensional gel electrophoresis. A total of 6000 protein spots, from three of these tissues, namely primary leaf, silique and seedling, were excised and the contained proteins were analysed by matrix assisted laser desorption/ionisation time of flight mass spectrometry peptide mass fingerprinting. This resulted in the identification of the proteins contained in 2943 spots, which were found to be products of 663 different genes. In this report we present and discuss the methodological and biological results of our plant proteome analysis

    Differential stimulation of pluripotent stem cell-derived human microglia leads to exosomal proteomic changes affecting neurons

    Get PDF
    Microglial exosomes are an emerging communication pathway, implicated in fulfilling homeostatic microglial functions and transmitting neurodegenerative signals. Gene variants of triggering receptor expressed on myeloid cells-2 (TREM2) are associated with an increased risk of developing dementia. We investigated the influence of the TREM2 Alzheimer’s disease risk variant, R47Hhet, on the microglial exosomal proteome consisting of 3019 proteins secreted from human iPS-derived microglia (iPS-Mg). Exosomal protein content changed according to how the iPS-Mg were stimulated. Thus lipopolysaccharide (LPS) induced microglial exosomes to contain more inflammatory signals, whilst stimulation with the TREM2 ligand phosphatidylserine (PS+) increased metabolic signals within the microglial exosomes. We tested the effect of these exosomes on neurons and found that the exosomal protein changes were functionally relevant and influenced downstream functions in both neurons and microglia. Exosomes from R47Hhet iPS-Mg contained disease-associated microglial (DAM) signature proteins and were less able to promote the outgrowth of neuronal processes and increase mitochondrial metabolism in neurons compared with exosomes from the common TREM2 variant iPS-Mg. Taken together, these data highlight the importance of microglial exosomes in fulfilling microglial functions. Additionally, variations in the exosomal proteome influenced by the R47Hhet TREM2 variant may underlie the increased risk of Alzheimer’s disease associated with this variant

    Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers

    Get PDF
    Synaptic pathology is a central event in Alzheimer’s disease (AD) and other neurodegenerative conditions, and investigation of synaptic proteins can provide valuable tools to follow synaptic dysfunction and loss in these diseases. Neuroligin-1 (Nlgn1) is a postsynaptic cell adhesion protein, important for synapse stabilization and formation. Nlgn1 has been connected to cognitive disorders, and specifically to AD, as target of the synaptotoxic effect of amyloid-β (Aβ) oligomers and Aβ fibrils. To address changes in Nlgn1 expression in human brain, brain regions in different neurological disorders were examined by Western blot and mass spectrometry. Brain specimens from AD (n = 23), progressive supranuclear palsy (PSP, n = 11), corticobasal degeneration (CBD, n = 10), and Pick’s disease (PiD, n = 9) were included. Additionally, cerebrospinal fluid (CSF) samples of AD patients (n = 43) and non-demented controls (n = 42) were analysed. We found decreased levels of Nlgn1 in temporal and parietal cortex (~ 50–60% reductions) in AD brains compared with controls. In frontal grey matter the reduction was not seen for AD patients; however, in the same region, marked reduction was found for PiD (~ 77%), CBD (~ 66%) and to a lesser extent for PSP (~ 43%), which could clearly separate these tauopathies from controls. The Nlgn1 level was reduced in CSF from AD patients compared to controls, but with considerable overlap. The dramatic reduction of Nlgn1 seen in the brain extracts of tauopathies warrants further investigation regarding the potential use of Nlgn1 as a biomarker for these neurodegenerative diseases

    Protein aggregate formation permits millennium-old brain preservation

    Get PDF
    Human proteins have not been reported to survive in free nature, at ambient temperature, for long periods. Particularly, the human brain rapidly dissolves after death due to auto-proteolysis and putrefaction. The here presented discovery of 2600-year-old brain proteins from a radiocarbon dated human brain provides new evidence for extraordinary long-term stability of non-amyloid protein aggregates. Immunoelectron microscopy confirmed the preservation of neurocytoarchitecture in the ancient brain, which appeared shrunken and compact compared to a modern brain. Resolution of intermediate filaments (IFs) from protein aggregates took 2–12 months. Immunoassays on micro-dissected brain tissue homogenates revealed the preservation of the known protein topography for grey and white matter for type III (glial fibrillary acidic protein, GFAP) and IV (neurofilaments, Nfs) IFs. Mass spectrometry data could be matched to a number of peptide sequences, notably for GFAP and Nfs. Preserved immunogenicity of the prehistoric human brain proteins was demonstrated by antibody generation (GFAP, Nfs, myelin basic protein). Unlike brain proteins, DNA was of poor quality preventing reliable sequencing. These long-term data from a unique ancient human brain demonstrate that aggregate formation permits for the preservation of brain proteins for millennia

    Differential patterns of lysosomal dysfunction are seen in the clinicopathological forms of primary progressive aphasia

    Get PDF
    Increasing evidence implicates endo-lysosomal dysfunction in frontotemporal dementia (FTD). 18 proteins were quantified using a mass spectrometry assay panel in the cerebrospinal fluid of 36 people with the language variant of FTD, primary progressive aphasia (PPA) (including 13 with non-fluent variant (nfvPPA), 11 with semantic variant (svPPA), and 12 with logopenic variant (lvPPA)) and 19 healthy controls. The concentrations of the cathepsins (B, D, F, L1, and Z) as well as AP-2 complex subunit beta, ganglioside GM2 activator, beta-hexosaminidase subunit beta, tissue alpha L-fucosidase, and ubiquitin were decreased in nfvPPA compared with controls. In contrast, the concentrations of amyloid beta A4 protein, cathepsin Z, and dipeptidyl peptidase 2 were decreased in svPPA compared with controls. No proteins were abnormal in lvPPA. These results indicate a differential alteration of lysosomal proteins in the PPA variants, suggesting those with non-Alzheimer’s pathologies are more likely to show abnormal lysosomal function

    Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains.

    No full text
    A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG

    Genome-scale metabolic network reconstruction of model animals as a platform for translational research

    Get PDF
    Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer's disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications
    • …
    corecore