31 research outputs found

    The orbital architecture and stability of the μ\mu Arae planetary system

    Full text link
    We re-analyze the global orbital architecture and dynamical stability of the μ\mu Arae planetary system. We have updated the best-fit elements and minimal masses of the planets based on literature radial velocity (RV) measurements, now spanning 15 years. This is twice the RVs interval used for the first characterization of the system in 2006. It consists of a Saturn- and two Jupiter-mass planets in low-eccentric orbits resembling the Earth-Mars-Jupiter configuration in the Solar system, as well as the close-in warm Neptune with a mass of ~14 Earth masses. Here, we constrain this early solution with the outermost period to be accurate to one month. The best-fit Newtonian model is characterized by moderate eccentricities of the most massive planets below 0.1 with small uncertainties ~0.02. It is close but meaningfully separated from the 2e:1b mean motion resonance of the Saturn-Jupiter-like pair, but may be close to weak three-body MMRs. The system appears rigorously stable over a wide region of parameter space covering uncertainties of several σ\sigma. The system stability is robust to a five-fold increase in the minimal masses, consistent with a wide range of inclinations, from 20 to 90 deg. This means that all planetary masses are safely below the brown dwarf mass limit. We found a weak statistical indication of the likely system inclination I~20-30 deg. Given the well constrained orbital solution, we also investigate the structure of hypothetical debris disks, which are analogs of the Main Belt and Kuiper Belt, and may naturally occur in this system.Comment: Several errors in the text have been removed and references corrected and expanded. This manuscript has 23 pages (20 pages+3 pages of supplementary on-line material), 2 tables and 14+2 multi-panel figures. Accepted to Monthly Notices of the RAS. Your comments are welcome

    Relative equilibria in the unrestricted problem of a sphere and symmetric rigid body

    Full text link
    We consider the unrestricted problem of two mutually attracting rigid bodies, an uniform sphere (or a point mass) and an axially symmetric body. We present a global, geometric approach for finding all relative equilibria (stationary solutions) in this model, which was already studied by Kinoshita (1970). We extend and generalize his results, showing that the equilibria solutions may be found by solving at most two non-linear, algebraic equations, assuming that the potential function of the symmetric rigid body is known explicitly. We demonstrate that there are three classes of the relative equilibria, which we call "cylindrical", "inclined co-planar", and "conic" precessions, respectively. Moreover, we also show that in the case of conic precession, although the relative orbit is circular, the point-mass and the mass center of the body move in different parallel planes. This solution has been yet not known in the literature.Comment: The manuscript with 10 pages, 5 figures; accepted to the Monthly Notices of the Royal Astronomical Societ

    Equilibria in the secular, non-coplanar two-planet problem

    Full text link
    We investigate the secular dynamics of a planetary system composed of the parent star and two massive planets in mutually inclined orbits. The dynamics are investigated in wide ranges of semi-major axes ratios (0.1-0.667), and planetary masses ratios (0.25-2) as well as in the whole permitted ranges of the energy and total angular momentum. The secular model is constructed by semi-analytic averaging of the three-body system. We focus on equilibria of the secular Hamiltonian (periodic solutions of the full system), and we analyze their stability. We attempt to classify families of these solutions in terms of the angular momentum integral. We identified new equilibria, yet unknown in the literature. Our results are general and may be applied to a wide class of three-body systems, including configurations with a star and brown dwarfs and sub-stellar objects. We also describe some technical aspects of the semi-numerical averaging. The HD 12661 planetary system is investigated as an example configuration.Comment: 18 pages, 17 figures, accepted to Monthly Notices of the Royal Astronomical Societ

    The long-term stability of extrasolar system HD 37124. Numerical study of resonance effects

    Full text link
    We describe numerical tools for the stability analysis of extrasolar planetary systems. In particular, we consider the relative Poincare variables and symplectic integration of the equations of motion. We apply the tangent map to derive a numerically efficient algorithm of the fast indicator MEGNO (a measure of the maximal Lyapunov exponent) that helps to distinguish chaotic and regular configurations. The results concerning the three-planet extrasolar system HD 37124 are presented and discussed. The best fit solutions found in earlier works are studied more closely. The system involves Jovian planets with similar masses. The orbits have moderate eccentricities, nevertheless the best fit solutions are found in dynamically active region of the phase space. The long term stability of the system is determined by a net of low-order two-body and three-body mean motion resonances. In particular, the three-body resonances may induce strong chaos that leads to self-destruction of the system after Myrs of apparently stable and bounded evolution. In such a case, numerically efficient dynamical maps are useful to resolve the fine structure of the phase space and to identify the sources of unstable behavior.Comment: 11 pages (total), 8 figures. Accepted for publication in MNRAS. The definitive version will be/is available at http://www.blackwellpublishing.com. The astro-ph version is prepared with low resolution figures. To obtain the manuscript with full-resolution figures, please visit http://www.astri.uni.torun.pl/~chris/mnrasIII.ps.g

    Testing a hypothesis of the \nu Octantis planetary system

    Full text link
    We investigate the orbital stability of a putative Jovian planet in a compact binary \nu Octantis reported by Ramm et al. We re-analyzed published radial velocity data in terms of self-consistent Newtonian model and we found stable best-fit solutions that obey observational constraints. They correspond to retrograde orbits, in accord with an earlier hypothesis of Eberle & Cuntz, with apsidal lines anti-aligned with the apses of the binary. The best-fit solutions are confined to tiny stable regions of the phase space. These regions have a structure of the Arnold web formed by overlapping low-order mean motion resonances and their sub-resonances. The presence of a real planet is still questionable, because its formation would be hindered by strong dynamical perturbations. Our numerical study makes use of a new computational Message Passing Interface (MPI) framework MECHANIC developed to run massive numerical experiments on CPU clusters.Comment: 12 pages, 12 figures, accepted to Monthly Notices of the RA

    A secular theory of coplanar, non-resonant planetary system

    Full text link
    We present the secular theory of coplanar NN-planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semi-major axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semi-major axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e., practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.Comment: 14 pages, 4 figures, MATHEMATICA file expansion.m, accepted to Monthly Notices of the Royal Astronomical Society. (minor corrections of symbols
    corecore