8,648 research outputs found

    The Size-Ramsey Number of 3-uniform Tight Paths

    Get PDF
    Given a hypergraph H, the size-Ramsey number ˆr2(H) is the smallest integer m such that there exists a hypergraph G with m edges with the property that in any colouring of the edges of G with two colours there is a monochromatic copy of H. We prove that the size-Ramsey number of the 3-uniform tight path on n vertices Pn(3) is linear in n, i.e., ˆr2(Pn(3)) = O(n). This answers a question by Dudek, La Fleur, Mubayi, and Rödl for 3-uniform hypergraphs [On the size-Ramsey number of hypergraphs, J. Graph Theory 86 (2016), 417–434], who proved ˆr2(Pn(3)) = O(n3/2 log3/2 n)

    Laser-induced charge and spin photocurrents at BiAg2_2 surface: a first principles benchmark

    Full text link
    Here, we report first principles calculations and analysis of laser-induced photocurrents at the surface of a prototype Rashba system. By referring to Keldysh non-equilibrium formalism combined with the Wannier interpolation scheme we perform first-principles electronic structure calculations of a prototype BiAg2_2 surface alloy, which is a well-known material realization of the Rashba model. In addition to non-magnetic ground state situation we also study the case of in-plane magnetized BiAg2_2. We calculate the laser-induced charge photocurrents for the ferromagnetic case and the laser-induced spin photocurrents for both the non-magnetic and the ferromagnetic cases. Our results confirm the emergence of very large in-plane photocurrents as predicted by the Rashba model. The resulting photocurrents satisfy all the symmetry restrictions with respect to the light helicity and the magnetization direction. We provide microscopic insights into the symmetry and magnitude of the computed currents based on the ab-initio multi-band electronic structure of the system, and scrutinize the importance of resonant two-band and three-band transitions for driven currents, thereby establishing a benchmark picture of photocurrents at Rashba-like surfaces and interfaces. Our work contributes to the study of the role of the interfacial Rashba spin-orbit interaction as a mechanism for the generation of in-plane photocurrents, which are of great interest in the field of ultrafast and terahertz spintronics

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure

    Structure of 55Sc and development of the N=34 subshell closure

    Get PDF
    The low-lying structure of 55^{55}Sc has been investigated using in-beam γ\gamma-ray spectroscopy with the 9^{9}Be(56^{56}Ti,55^{55}Sc+γ\gamma)XX one-proton removal and 9^{9}Be(55^{55}Sc,55^{55}Sc+γ\gamma)XX inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory. Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27), 2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been constructed using γγ\gamma\gamma coincidence relationships and γ\gamma-ray relative intensities. The results are compared to large-scale shell-model calculations in the sdsd-pfpf model space, which account for positive-parity states from proton-hole cross-shell excitations, and to it ab initio shell-model calculations from the in-medium similarity renormalization group that includes three-nucleon forces explicitly. The results of proton-removal reaction theory with the eikonal model approach were adopted to aid identification of positive-parity states in the level scheme; experimental counterparts of theoretical 1/21+1/2^{+}_{1} and 3/21+3/2^{+}_{1} states are suggested from measured decay patterns. The energy of the first 3/23/2^{-} state, which is sensitive to the neutron shell gap at the Fermi surface, was determined. The result indicates a rapid weakening of the N=34N=34 subshell closure in pfpf-shell nuclei at Z>20Z>20, even when only a single proton occupies the πf7/2\pi f_{7/2} orbital

    Structural evolution in the neutron-rich nuclei 106Zr and 108Zr

    Get PDF
    The low-lying states in 106Zr and 108Zr have been investigated by means of {\beta}-{\gamma} and isomer spectroscopy at the RI beam factory, respectively. A new isomer with a half-life of 620\pm150 ns has been identified in 108Zr. For the sequence of even-even Zr isotopes, the excitation energies of the first 2+ states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The deformed ground state of 108Zr indicates that a spherical sub-shell gap predicted at N = 70 is not large enough to change the ground state of 108Zr to the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is also discussed.Comment: 10 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns

    Get PDF
    The Yonsei Aerosol Retrieval (YAER) algorithm for the Geostationary Ocean Color Imager (GOCI) retrieves aerosol optical properties only over dark surfaces, so it is important to mask pixels with bright surfaces. The Advanced Himawari Imager (AHI) is equipped with three shortwave-infrared and nine infrared channels, which is advantageous for bright-pixel masking. In addition, multiple visible and near-infrared channels provide a great advantage in aerosol property retrieval from the AHI and GOCI. By applying the YAER algorithm to 10 min AHI or 1 h GOCI data at 6km x 6km resolution, diurnal variations and aerosol transport can be observed, which has not previously been possible from low-Earth-orbit satellites. This study attempted to estimate the optimal aerosol optical depth (AOD) for East Asia by data fusion, taking into account satellite retrieval uncertainty. The data fusion involved two steps: (1) analysis of error characteristics of each retrieved result with respect to the ground-based Aerosol Robotic Network (AERONET), as well as bias correction based on normalized difference vegetation indexes, and (2) compilation of the fused product using ensemble-mean and maximum-likelihood estimation (MLE) methods. Fused results show a better statistics in terms of fraction within the expected error, correlation coefficient, root-mean-square error (RMSE), and median bias error than the retrieved result for each product. If the RMSE and mean AOD bias values used for MLE fusion are correct, the MLE fused products show better accuracy, but the ensemble-mean products can still be useful as MLE

    EVpedia: a community web portal for extracellular vesicles research

    Get PDF
    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. Availability and implementation: The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info. CONTACT: [email protected]

    Regularizing effect and local existence for non-cutoff Boltzmann equation

    Get PDF
    The Boltzmann equation without Grad's angular cutoff assumption is believed to have regularizing effect on the solution because of the non-integrable angular singularity of the cross-section. However, even though so far this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo differential operators, we prove the regularizing effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and Maxwellian type decay in velocity variable, there exists a unique local solution with the same regularity, so that this solution enjoys the CC^\infty regularity for positive time

    Examining Organizational Response and Employee Coping Behaviors amid the COVID-19 Pandemic

    Get PDF
    Using the crisis in context theory (CCT) as an ecological framework to understanding human behaviors, the study examined organizational responses and individual employee coping behaviors to mitigate the impact of the COVID-19 pandemic. Drawing from the perspectives of psychology, organization development, and management, the research examined dependent and independent organization and self-initiated actions that employees deemed helpful in coping with the effects of the crisis. Qualitative data were gathered through online survey from 216 employees in the Philippines, a developing country whose major cities were on community quarantine to minimize the spread of the pandemic. The study identified organizational actions or responses to help employees adapt to the COVID-19 crisis. These are: 1) flexible work arrangements, 2) mental health and well-being programs, 3) physical health and safety measures, 4) financial support, 5) provision of material resources, and 6) communication of short and long term plans. Findings also surfaced coping strategies at the individual employee level and how these relate to organizational initiatives. Seven themes emerged from the data- 1) task-focused coping, 2) stress management, 3) social coping, 4) cognitive strategies, 5) learning and development activities, 6) faith-oriented coping, and 7) maladaptive strategies. The analysis highlighted the interrelatedness of organizational responses and employee actions (e.g. how individual task/social coping behaviors were enabled by the company\u27s flexible work arrangements and provision of technological resources amidst physical distancing). Insights from the findings may orient organizational efforts to mitigate the impact of the pandemic as well as encourage and support positive employee coping behaviors
    corecore