242 research outputs found

    Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization

    Get PDF
    The modeling and remodeling of bone requires activation and polarization of osteoclasts, achieved by reorganization of the cytoskeleton. Members of the Rho subfamily of small GTPases, including Cdc42, are known regulators of cytoskeletal components, but the role of these proteins in bone physiology and pathophysiology remains unclear. Here, we examined loss-of-function mice in which Cdc42 was selectively ablated in differentiated osteoclasts and gain-of-function animals wherein Cdc42Gap, a protein that inactivates the small GTPase, was deleted globally. Cdc42 loss-of-function mice were osteopetrotic and resistant to ovariectomy-induced bone loss, while gain-of-function animals were osteoporotic. Isolated Cdc42-deficient osteoclasts displayed suppressed bone resorption, while osteoclasts with increased Cdc42 activity had enhanced resorptive capacity. We further demonstrated that Cdc42 modulated M-CSF–stimulated cyclin D expression and phosphorylation of Rb and induced caspase 3 and Bim, thus contributing to osteoclast proliferation and apoptosis rates. Furthermore, Cdc42 was required for multiple M-CSF– and RANKL-induced osteoclastogenic signals including activation and expression of the differentiation factors MITF and NFATc1 and was a component of the Par3/Par6/atypical PKC polarization complex in osteoclasts. These data suggest that Cdc42 regulates osteoclast formation and function and may represent a promising therapeutic target for prevention of pathological bone loss

    NF-Y activates genes of metabolic pathways altered in cancer cells

    Get PDF
    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells

    Expression and function of NF-Y subunits in cancer

    Get PDF
    NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered

    Teoria economica e mutamento costituzionale

    Get PDF
    «La mia interpretazione del rapporto tra teoria della politica economica e trasformazione istituzionale nel concreto dell’attuale esperienza europea prende la forma di sei brevi riflessioni su altrettante questioni che ritengo rilevanti»... (segue)

    Phylogeny of NF-YA trans-activation splicing isoforms in vertebrate evolution

    Get PDF
    NF-Y is a trimeric pioneer Transcription Factor (TF) whose target sequence -the CCAAT box- is present in ~25% of mammalian promoters. We reconstruct the phylogenetic history of the regulatory NF-YA subunit in vertebrates. We find that in addition to the remarkable conservation of the subunits-interaction and DNA-binding parts, the Transcriptional Activation Domain (TAD) is also conserved (>90% identity among bony vertebrates). We infer the phylogeny of the alternatively spliced exon-3 and partial splicing events of exon-7 -7N and 7C- revealing independent clade-specific losses of these regions. These isoforms shape the TAD. Absence of exon3 in basal deuterostomes, cartilaginous fishes and hagfish, but not in lampreys, suggests that the "short" isoform is primordial, with emergence of exon-3 in chordates. Exon 7N was present in the vertebrate common ancestor, while 7C is a molecular innovation of teleost fishes. RNA-seq analysis in several species confirms expression of all these isoforms. We identify 3 blocks of amino acids in the TAD shared across deuterostomes, yet structural predictions and sequence analyses suggest an evolutionary drive for maintenance of an Intrinsically Disordered Region -IDR- within the TAD. Overall, these data help reconstruct the logic for alternative splicing of this essential eukaryotic TF

    Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF‐YA2 and YUC2

    Get PDF
    Plants substantially alter their developmental program upon changes in the ambient temperature. The 21–24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature‐controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF‐YA2, is also ambient temperature‐regulated. NF‐YA2, as the component of the conserved transcriptional regulator NF‐Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24‐nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants

    The Plant NF-Y DNA Matrix In Vitro and In Vivo

    Get PDF
    Nuclear Factor Y (NF-Y) is an evolutionarily conserved trimer formed by a Histone-Fold Domain (HFD) heterodimeric module shared by core histones, and the sequence-specific NF-YA subunit. In plants, the genes encoding each of the three subunits have expanded in number, giving rise to hundreds of potential trimers. While in mammals NF-Y binds a well-characterized motif, with a defined matrix centered on the CCAAT box, the specificity of the plant trimers has yet to be determined. Here we report that Arabidopsis thaliana NF-Y trimeric complexes, containing two different NF-YA subunits, bind DNA in vitro with similar affinities. We assayed precisely sequence-specificity by saturation mutagenesis, and analyzed genomic DNA sites bound in vivo by selected HFDs. The plant NF-Y CCAAT matrix is different in nucleotides flanking CCAAT with respect to the mammalian matrix, in vitro and in vivo. Our data point to flexible DNA-binding rules by plant NF-Ys, serving the scope of adapting to a diverse audience of genomic motifs

    The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis

    Get PDF
    The serine/threonine kinase PAK4 was identified first as an effector molecule for the Rho GTPase Cdc42. PAK4 differs from other members of the PAK family both in sequence and function. Previously we have shown that an important function of this kinase is to mediate the induction of filopodia in response to activated Cdc42. Studies with a, constitutively active PAK4 mutant have shown that it also has a role in promoting anchorage-independent growth, an important hallmark of oncogenic transformation. Here we show that another function of PAK4 is to protect cells against apoptotic cell death. Expression of wild-type or constitutively active PAK4 delays the onset of apoptosis in response to tumor necrosis factor LY stimulation, UV irradiation, and serum starvation. Consistent with an antiapoptotic function, expression of PAK4 leads to an increase in phosphorylation of the proapoptotic protein Bad and an inhibition of caspase activation
    corecore