46 research outputs found

    Assigning confidence scores to homoeologs using fuzzy logic.

    Get PDF
    In polyploid genomes, homoeologs are a specific subtype of homologs, and can be thought of as orthologs between subgenomes. In Orthologous MAtrix, we infer homoeologs in three polyploid plant species: upland cotton (Gossypium hirsutum), rapeseed (Brassica napus), and bread wheat (Triticum aestivum). While we can typically recognize the features of a "good" homoeolog prediction (a consistent evolutionary distance, high synteny, and a one-to-one relationship), none of them is a hard-fast criterion. We devised a novel fuzzy logic-based method to assign confidence scores to each pair of predicted homoeologs. We inferred homoeolog pairs and used the new and improved method to assign confidence scores, which ranged from 0 to 100. Most confidence scores were between 70 and 100, but the distribution varied between genomes. The new confidence scores show an improvement over our previous method and were manually evaluated using a subset from various confidence ranges

    OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more.

    Get PDF
    OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org

    The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and Hi overview

    Get PDF
    Context. The Galactic plane has been observed extensively by a large number of Galactic plane surveys from infrared to radio wavelengths at an angular resolution below 40". However, a 21 cm line and continuum survey with comparable spatial resolution is still missing. Aims. The first half of THOR data (l = 14.0 37.9, and l = 47.1 51.2, |b| < 1.25) has been published in our data release 1 paper (Beuther et al. 2016). With this data release 2 paper, we publish all the remaining spectral line data and Stokes I continuum data with high angular resolution (1000–4000) including a new H i dataset for the whole THOR survey region (l = 14.0 67.4 and |b| < 1.25). As we have published the results of OH lines and continuum emission elsewhere, we concentrate on the H i analysis in this paper. Methods. With the Karl G. Jansky Very Large Array (VLA) in C-configuration, we observed a large portion of the first Galactic quadrant achieving an angular resolution of < 40. At L Band, the WIDAR correlator at the VLA was set to cover the 21 cm H i line, four OH transitions, a series of Hn↵ radio recombination lines (RRLs; n = 151 to 186), and eight 128 MHz wide continuum spectral windows (SPWs) simultaneously. Results. We publish all OH and RRL data from the C-configuration observations, and a new H i dataset combining VLA C+D+GBT (VLA D-configuration and GBT data are from the VLA Galactic Plane Survey, Stil et al. 2006) for the whole survey. The H i emission shows clear filamentary substructures at negative velocities with low velocity crowding. The emission at positive velocities is more smeared-out likely due to higher spatial and velocity crowding of structures at the positive velocities. Comparing to the spiral arm model of the Milky Way, the atomic gas follows the Sagittarius and Perseus Arm well but with significant material in the inter-arm regions. With the C-configuration-only H i+continuum data, we produced a H i optical depth map of the THOR areal coverage from 228 absorption spectra with the nearest-neighbor method. With this ⌧ map, we corrected the H i emission for optical depth and the derived column density is 38% higher than the column density with optically thin assumption. The total H i mass with optical depth correction in the survey region is 4.7⇥108 M, 31% more than the mass derived assuming the emission is optically thin. If we apply this 31% correction to the whole Milky Way, the total atomic gas mass would be 9.4–10.5⇥109 M. Comparing the H i with existing CO data, we find a significant increase in the atomic-to-molecular gas ration from the spiral arms to the inter-arm regions. Conclusions. The high sensitivity and resolution THOR H i dataset provides an important new window on the physical and kinematic properties of gas in the inner Galaxy. Although the optical depth we derive is a lower limit, our study shows that the optical depth correction is significant for H i column density and mass estimation. Together with the OH, RRL and continuum emission from the THOR survey, these new H i data provide the basis for high angular-resolution studies of the interstellar medium (ISM) in different phases

    The Quest for Orthologs benchmark service and consensus calls in 2020.

    Get PDF
    The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases

    Feedback in W94A diagnosed with Radio Recombination Lines and Models

    Get PDF
    We present images of radio recombination lines (RRLs) at wavelengths around 18 cm from the star-forming region W49A to determine the kinematics of ionized gas in the THOR survey (The Hi/OH/Recombination line survey of the inner Milky Way) at an angular resolution of 16:08 X 13:08. The distribution of ionized gas appears to be affected by feedback processes from the star clusters inW49A. The velocity structure of the RRLs shows a complex behaviour with respect to the molecular gas. We find a shell-like distribution of ionized gas as traced by RRL emission surrounding the central cluster of OB stars in W49A. We describe the evolution of the shell with the recent feedback model code warpfield that includes the important physical processes and has previously been applied to the 30 Doradus region in the Large Magellanic Cloud. The cloud structure and dynamics of W49A are in agreement with a feedbackdriven shell that is re-collapsing. The shell may have triggered star formation in other parts of W49A. We suggest that W49A is a potential candidate for star formation regulated by feedback-driven and re-collapsing shells

    Accelarated immune ageing is associated with COVID-19 disease severity

    Get PDF
    Background The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. Results We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3–5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28−ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ( = 0.174, p = 0.043), with a major influence being disease severity ( = 0.188, p = 0.01). Conclusions Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease

    Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK: a prospective multicentre cohort study

    Get PDF
    Background: Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea. Methods: CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2–7 months after hospital discharge and a later time point 10–14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107). Findings: 2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4–6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5–8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (–19%; 95% CI –20 to –16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18–39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27–41% of this effect. Interpretation: Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition. Funding: UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council

    Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury

    Get PDF
    A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    corecore