779 research outputs found

    The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster.

    Get PDF
    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.Studies of centriole and basal body function in our laboratory are funded by the Wellcome Trust

    Ecological succession of a Jurassic shallow-water ichthyosaur fall.

    Get PDF
    After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively

    Stress Biomarkers as Outcomes for HIV+ Prevention: Participation, Feasibility and Findings Among HIV+ Latina and African American Mothers

    Get PDF
    Mothers living with HIV (MLH) are at high risk for acute and chronic stress, given challenges related to their HIV status, ethnicity, economic and urban living conditions. Biomarkers combined into a composite index show promise in quantifying psychosocial stress in healthy people, but have not yet been examined among MLH. According, we examined potential biomarker correlates of stress [cortisol and catecholamines from home-collected urine and basic health indicators (blood pressure, height and weight, waist-to-hip ratio) measured during an interview] among 100 poor African American and Latina mothers MLH and demographic-matched control mothers without HIV (n = 50). Participants had been enrolled in a randomized controlled trial about 18 months earlier and had either received (MLH-I) or were awaiting (MLH-W) the psychosocial intervention. Participation was high, biomarkers were correctly collected for 93% of cases, and a complete composite biomarker index (CBI) calculated for 133 mothers (mean age = 42). As predicted, MLH had a significantly higher CBI than controls, but there was no CBI difference across ethnicity or intervention group. CBI predicted CD4 counts independently after controlling for age, years since diagnosis, prior CD4 counts, medication adherence, and depression symptoms. The study demonstrates acceptability, feasibility and potential utility of community-based biomarker collections in evaluating individual differences in psychosocial stress

    Improving education in primary care: development of an online curriculum using the blended learning model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standardizing the experiences of medical students in a community preceptorship where clinical sites vary by geography and discipline can be challenging. Computer-assisted learning is prevalent in medical education and can help standardize experiences, but often is not used to its fullest advantage. A blended learning curriculum combining web-based modules with face-to-face learning can ensure students obtain core curricular principles.</p> <p>Methods</p> <p>This course was developed and used at The Case Western Reserve University School of Medicine and its associated preceptorship sites in the greater Cleveland area. Leaders of a two-year elective continuity experience at the Case Western Reserve School of Medicine used adult learning principles to develop four interactive online modules presenting basics of office practice, difficult patient interviews, common primary care diagnoses, and disease prevention. They can be viewed at <url>http://casemed.case.edu/cpcp/curriculum</url>. Students completed surveys rating the content and technical performance of each module and completed a Generalist OSCE exam at the end of the course.</p> <p>Results</p> <p>Participating students rated all aspects of the course highly; particularly those related to charting and direct patient care. Additionally, they scored very well on the Generalist OSCE exam.</p> <p>Conclusion</p> <p>Students found the web-based modules to be valuable and to enhance their clinical learning. The blended learning model is a useful tool in designing web-based curriculum for enhancing the clinical curriculum of medical students.</p

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
    corecore