7 research outputs found

    Isolation and characterisation of secondary metabolites from arctic, marine invertebrates

    Get PDF
    Bioprospecting is the systematic search for and discovery of products in nature, with the purpose of developing commercial products. The marine environment displays a rich biological diversity, as well as a diversity within environmental factors. This environment has necessitated the production of potent secondary metabolites by marine organisms in their arms race against predators and pathogens, in the battle for space and to increase chances of reproduction. The resulting compounds are generally known to have unique chemical features, often unknown from terrestrial sources, as well as interesting biological activities. Due to these factors, they are believed to hold an immense potential as lead compounds in development of commercial products. The aim of this thesis was to isolate and characterise secondary metabolites from extracts of eight Arctic, marine invertebrates. Prefractionated extracts were screened for anticancer activity, and active fractions were dereplicated to investigate if the bioactive compound(s) was novel or had been previously reported. Three compounds believed to be novel were isolated, structure elucidated and biologically characterised. A novel compound, named BI-L-665.6 in this thesis, was isolated from the organic extract of Bryozoa indet. In addition, Ponasterone A (Pon A) and dehydroxy-Pon A were isolated from the organic extract of Alcyonidium gelatinosum. Pon A was first isolated from Podocarpus nakaii in 1966, but this is the first time that this compound has been isolated from A.gelatinosum. Biological characterisation of the isolated compounds detected no anticancer or antibacterial activity at the test concentrations employed in the assays. The results from this thesis show that bioprospecting of collected marine invertebrates enables discovery of secondary metabolites with novel chemistry, as well as previously reported compounds in new species

    Ponasterone A and F, Ecdysteroids from the Arctic Bryozoan Alcyonidium gelatinosum

    Get PDF
    A new ecdysteroid, ponasterone F (1) and the previously reported compound ponasterone A (2) were isolated from specimens of the Arctic marine bryozoan Alcyonidium gelatinosum collected at Hopenbanken, off the coast of Edgeøya, Svalbard. The structure of 1 was elucidated, and the structure of 2 confirmed by spectroscopic methods including 1D and 2D NMR and analysis of HR-MS data. The compounds were evaluated for their ability to affect bacterial survival and cell viability, as well as their agonistic activities towards the estrogen receptors α and β. The compounds were not active in these assays. Compound 2 is an arthropod hormone controlling molting and are known to act as an allelochemical when produced by plants. Even though its structure has been previously reported, this is the first time a ponasterone has been isolated from a bryozoan. A. gelatinosum produced 1 and 2 in concentrations surpassing those expected of hormonal molecules, indicating their function as defence molecules against molting predators. This work adds to the chemical diversity reported from marine bryozoans and expanded our knowledge of the chemical modifications of the ponasterone

    Crystal structure of DNA polymerase I from Thermus phage G20c

    No full text
    This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SβαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SβαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SβαR motif, was first determined to 2.19 Å resolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Å resolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus

    Going to extremes - a metagenomic journey into the dark matter of life

    No full text
    The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life

    Going to extremes - a metagenomic journey into the dark matter of life

    No full text
    Aevarsson A, Kaczorowska A-K, Adalsteinsson BT, et al. Going to extremes - a metagenomic journey into the dark matter of life. FEMS microbiology letters. 2021: fnab067.The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life. © The Author(s) 2021. Published by Oxford University Press on behalf of FEMS

    Going to extremes - a metagenomic journey into the dark matter of life

    No full text
    Aevarsson A, Kaczorowska A-K, Adalsteinsson BT, et al. Going to extremes - a metagenomic journey into the dark matter of life. FEMS microbiology letters. 2021: fnab067.The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life. © The Author(s) 2021. Published by Oxford University Press on behalf of FEMS
    corecore