121 research outputs found

    A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH

    Full text link
    The infectious agent of transmissible spongiform encephalopathies is believed to consist of an oligomeric isoform, PrPSc, of the monomeric cellular prion protein, PrPC. The conversion of PrPC to PrPSc is characterized by a decrease in alpha-helical structure, an increase in beta-sheet content, and the formation of PrPSc amyloid. Whereas the N-terminal part of PrPC comprising residues 23-120 is flexibly disordered, its C-terminal part, PrP(121-231), forms a globular domain with three alpha-helices and a small beta-sheet. Because the segment of residues 90-231 is protease-resistant in PrPSc, it is most likely structured in the PrPSc form. The conformational change of the segment containing residues 90-120 thus constitutes the minimal structural difference between PrPC and a PrPSc monomer. To test whether PrP(121-231) is also capable to undergo conformational transitions, we analyzed its urea-dependent unfolding transitions at neutral and acidic pH. We identified an equilibrium unfolding intermediate of PrP(121-231) that is exclusively populated at acidic pH and shows spectral characteristics of a beta-sheet protein. The intermediate is in rapid equilibrium with native PrP(121-231), significantly populated in the absence of urea at pH 4.0, and may have important implications for the presumed formation of PrPSc during endocytosis

    nDsbD: a redox interaction hub in the Escherichia coli periplasm

    Get PDF
    Abstract.: DsbD is a redox-active protein of the inner Escherichia coli membrane possessing an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain. nDsbD interacts with four different redox proteins involved in the periplasmic disulfide isomerization and in the cytochrome c maturation systems. We review here the studies that led to the structural characterization of all soluble DsbD domains involved and, most importantly, of trapped disulfide intermediate complexes of nDsbD with three of its four redox partners. These results revealed the structural features enabling nDsbD, a ‘redox hub' with an immunoglobulin-like fold, to interact efficiently with its different thioredoxin-like partner

    Structural and functional characterization of the oxidoreductase a-DsbA1 from wolbachia pipientis

    Full text link
    The &alpha;-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host\u27s reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (&alpha;-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia &alpha;-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia &alpha;-DsbA1 possesses a second disulfide that is highly conserved in &alpha;-proteobacterial DsbAs but not in other DsbAs. The &alpha;-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of &alpha;-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.<br /

    New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    Get PDF
    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies

    Properties, production, and applications of camelid single-domain antibody fragments

    Get PDF
    Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications

    Staphylococcus aureus DsbA does not have a destabilizing disulfide: A new paradigm for bacterial oxidative folding

    Get PDF
    In Gram-negative bacteria, the introduction of disulfide bonds into folding proteins occurs in the periplasm and is catalyzed by donation of an energetically unstable disulfide from DsbA, which is subsequently re-oxidized through interaction with DsbB. Gram-positive bacteria lack a classic periplasm but nonetheless encode Dsb-like proteins. Staphylococcus aureus encodes just one Dsb protein, a DsbA, and no DsbB. Here we report the crystal structure of S. aureus DsbA (SaDsbA), which incorporates a thioredoxin fold with an inserted helical domain, like its Escherichia coli counterpart EcDsbA, but it lacks the characteristic hydrophobic patch and has a truncated binding groove near the active site. These findings suggest that SaDsbA has a different substrate specificity than EcDsbA. Thermodynamic studies indicate that the oxidized and reduced forms of SaDsbA are energetically equivalent, in contrast to the energetically unstable disulfide form of EcDsbA. Further, the partial complementation of EcDsbA by SaDsbA is independent of EcDsbB and biochemical assays show that SaDsbA does not interact with EcDsbB. The identical stabilities of oxidized and reduced SaDsbA may facilitate direct re-oxidation of the protein by extracellular oxidants, without the need for DsbB

    Prion protein NMR structure and familial human spongiform encephalopathies

    Full text link
    The refined NMR structure of the mouse prion protein domain mPrP(121-231) and the recently reported NMR structure of the complete 208-residue polypeptide chain of mPrP are used to investigate the structural basis of inherited human transmissible spongiform encephalopathies. In the cellular form of mPrP no spatial clustering of mutation sites is observed that would indicate the existence of disease-specific subdomains. A hydrogen bond between residues 128 and 178 provides a structural basis for the observed highly specific influence of a polymorphism in position 129 in human PrP on the disease phenotype that segregates with the mutation Asp-178-Asn. Overall, the NMR structure implies that only part of the disease-related amino acid replacements lead to reduced stability of the cellular form of PrP, indicating that subtle structural differences in the mutant proteins may affect intermolecular signaling in a variety of different ways

    Prion protein NMR structure and species barrier for prion diseases

    Full text link
    The structural basis of species specificity of transmissible spongiform encephalopathies, such as bovine spongiform encephalopathy or "mad cow disease" and Creutzfeldt-Jakob disease in humans, has been investigated using the refined NMR structure of the C-terminal domain of the mouse prion protein with residues 121-231. A database search for mammalian prion proteins yielded 23 different sequences for the fragment 124-226, which display a high degree of sequence identity and show relevant amino acid substitutions in only 18 of the 103 positions. Except for a unique isolated negative surface charge in the bovine protein, the amino acid differences are clustered in three distinct regions of the three-dimensional structure of the cellular form of the prion protein. Two of these regions represent potential species-dependent surface recognition sites for protein-protein interactions, which have independently been implicated from in vitro and in vivo studies of prion protein transformation. The third region consists of a cluster of interior hydrophobic side chains that may affect prion protein transformation at later stages, after initial conformational changes in the cellular protein
    • …
    corecore