189 research outputs found

    Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases

    Get PDF
    The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases. Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined. Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P < 0.001) with no significant difference for other aortic segments (P > 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01). Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material

    The Genome of Borrelia recurrentis, the Agent of Deadly Louse-Borne Relapsing Fever, Is a Degraded Subset of Tick-Borne Borrelia duttonii

    Get PDF
    In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163–1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains

    Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions

    Get PDF
    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host

    Insight into cross-talk between intra-amoebal pathogens

    Get PDF
    Abstract: Background: Amoebae are phagocytic protists where genetic exchanges might take place between amoeba-resistant bacteria. These amoebal pathogens are able to escape the phagocytic behaviour of their host. They belong to different bacterial phyla and often show a larger genome size than human-infecting pathogens. This characteristic is proposed to be the result of frequent gene exchanges with other bacteria that share a sympatric lifestyle and contrasts with the genome reduction observed among strict human pathogens.Results: We sequenced the genome of a new amoebal pathogen, Legionella drancourtii, and compared its gene content to that of a Chlamydia-related bacterium, Parachlamydia acanthamoebae. Phylogenetic reconstructions identified seven potential horizontal gene transfers (HGTs) between the two amoeba-resistant bacteria, including a complete operon of four genes that encodes an ABC-type transporter. These comparisons pinpointed potential cases of gene exchange between P. acanthamoebae and Legionella pneumophila, as well as gene exchanges between other members of the Legionellales and Chlamydiales orders. Moreover, nine cases represent possible HGTs between representatives from the Legionellales or Chlamydiales and members of the Rickettsiales order.Conclusions: This study identifies numerous gene exchanges between intracellular Legionellales and Chlamydiales bacteria, which could preferentially occur within common inclusions in their amoebal hosts. Therefore it contributes to improve our knowledge on the intra-amoebal gene properties associated to their specific lifestyle

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap

    A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Get PDF
    BACKGROUND: The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA) sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. RESULTS: The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order) and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology reflects the true organismal relationships. CONCLUSION: In disclosing a sister relationship between the Mesostigmatales and Chlorokybales, our study resolves the long-standing debate about the nature of the unicellular flagellated ancestors of land plants and alters significantly our concepts regarding the evolution of streptophyte algae. Moreover, in predicting a richer chloroplast gene repertoire than previously inferred for the common ancestor of all streptophytes, our study has contributed to a better understanding of chloroplast genome evolution in the Viridiplantae

    Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga

    Get PDF
    Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat

    Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study

    Get PDF
    corecore