194 research outputs found

    Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6-Based Nanohybrids

    Get PDF
    The possibility to obtain carbon nanotubes (CNT)/polyamide 6 composites with excellent mechanical properties in a simple, industrially scalable way is investigated. Commercial CNTs are treated by plasma while changing some key parameters (exposure time, plasma power, type of gas) in order to optimize the process and to achieve a sufficient degree of functionalization. The treated samples are characterized by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The most interesting samples are selected to be used as reinforcing fillers, in different concentrations, in a polyamide 6 matrix. The mechanical tests show a dramatic increase of both tensile and impact properties, due to the achievement of a good wettability, and an efficient dispersion of the CNTs in the polymer matrix, as confirmed by scanning electron microscopy observations

    Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza

    Get PDF
    Surface-active copolymers of a styrene carrying a polysiloxane side chain (SSi) and a triethyleneglycol monomethyl ether-modified pentafluorostyrene (EFS) (39 and 77 mol% EFS) were prepared and incorporated (8 wt% loading) into a polydimethyl siloxane (PDMS) matrix to produce crosslinked blend films. The wettability of the surface-active copolymer films and PDMS-blend films was investigated by contact angle measurements. An angle-resolved X-ray photoelectron spectroscopy (XPS) of the surface chemical composition before and after immersion in water for 7 days enabled location of the hydrophilic oxyethylenic segments of EFS within the top 10 nm from the film surface. Laboratory bioassays on the blend films against the marine green alga Ulva linza evidenced that the films containing the copolymer with the larger EFS content showed greater resistance to settlement of zoospores of U. linza, whereas both films had superior fouling-release properties of sporelings (young plants) compared to the PDMS standard films

    A pilot study of nurse-led, home monitoring for patients with chronic respiratory failure and with mechanical ventilation assistance.

    Get PDF
    We assessed the feasibility of telemedicine for home monitoring of 45 patients with chronic respiratory failure (CRF) discharged from hospital. The patients transmitted pulsed arterial saturation (pSat) data via a telephone modem to a receiving station where a nurse was available for a teleconsultation. A respiratory physician was also available. Scheduled and ad hoc appointments were conducted. Thirty-five patients were on home mechanical ventilation, 13 with invasive and 22 with non-invasive devices. The main diagnosis was chronic obstructive pulmonary disease (COPD). The follow-up period was 176 days (SD 69). In all, 376 calls for scheduled consultations were received and 83 ad hoc consultations were requested by the patients. The actions taken were: 55 therapy modifications, 19 hospitalizations in a respiratory department for decompensated CRF, three hospitalizations in an intensive care unit (ICU), 22 requests for further investigations, 25 contacts with the general practitioner (GP), 66 demands for respiratory consultations and 10 calls for the emergency department. The mean time recorded for the 459 calls was 16 min/patient/week. In 82% of calls, a pSat recording was received successfully. The nurse time required to train the users in the operation of the pSat instrument was high (mean time 30 min). However, the results showed that home monitoring was feasible, and useful for titration of oxygen, mechanical ventilation setting and stabilization of relapse

    Novel correlations between spectroscopic and morphological properties of activated carbons from waste coffee grounds

    Get PDF
    Massive quantities of spent coffee grounds (SCGs) are generated by users around the world. Different processes have been proposed for SCG valorization, including pyrolytic processes to achieve carbonaceous materials. Here, we report the preparation of activated carbons through pyrolytic processes carried out under different experimental conditions and in the presence of various porosity activators. Textural and chemical characterization of the obtained carbons have been achieved through Brunauer–Emmett–Teller (BET), ESEM,13C solid state NMR, XPS, XRD, thermogravimetric and spectroscopic determinations. The aim of the paper is to relate these data to the preparation method, evaluating the correlation between the spectroscopic data and the physical and textural properties, also in comparison with the corresponding data obtained for three commercial activated carbons used in industrial adsorption processes. Some correlations have been observed between the Raman and XPS data

    De Cardoso a Lula : um balanço da diplomacia presidencial no Brasil

    Get PDF
    Trabalho de Conclusão de Curso (especialização)—Universidade de Brasília, Instituto de Relações Internacionais, Programa de Pós-Graduação em Relações Internacionais, XVII Curso de Especialização em Relações Internacionais, 2016.A diplomacia na arena contemporânea das relações internacionais passou por diversos processos de transformações. Novos elementos e atores passaram a fazer parte do tabuleiro do jogo internacional. O fazer diplomacia deixa de ser uma tarefa exclusiva dos agentes diplomáticos, o processo da diplomacia então sofre influência dos mais diversos lados, desde setores importantes da opinião pública, da mídia e dos diversos âmbitos do governo. A diplomacia presidencial surge como uma forma de adequação as necessidades da sociedade moderna, um meio de alavancar os objetivos traçados internamente pelas políticas externas dos Estados. No Brasil, a pratica ganhou notoriedade nos governos de FHC e Lula, quando ambos usaram da ferramenta em larga escala. Sob análise feita de ambos os governos, podemos notar que a condução da politica externa feita pelo mandatário é amplamente influenciada pelo seu viés político e pessoal.Diplomacy in the contemporary arena of International relations has gone through several transformation processes. New elements and actors are now part pieces on the board of the international game. Making diplomacy is no longer an exclusive task of diplomatic agents, diplomacy experiences influence from everywhere, from important sectors of public opinion, from media and from diver’s government’s sectors. Presidential diplomacy emerges to fit the needs of the modern society, a way of boosting the goals set internally by the Countries’ foreign policy. In Brazil, this practice was specially noticed on FHC’s and Lula’s government’s, when they booth used this tool widely. Under the analysis of both governments, One can tell that the foreign policy is widely influenced by theirs political and personal bias

    Molybdenum oxide on Fe2O3 Core-Shell catalysts: Probing the nature of the structural motifs responsible for methanol oxidation catalysis

    Get PDF
    A series of MoOx-modified Fe2O3 catalysts have been prepared in an attempt to make core–shell oxidic materials of the type MoOx/Fe2O3. It is conclusively shown that for three monolayers of Mo dosed, the Mo stays in the surface region, even after annealing to high temperature. It is only when the material is annealed above 400 °C that it reacts with the iron oxide. We show by a combination of methods, and especially by XAFS, that at temperatures above 400 °C, most of the Mo converts to Fe2(MoO4)3, with Mo in a tetrahedral structure, whereas below that temperature, nanocrystalline MoO3 is present in the sample; however, the active catalysts have an octahedral MoOx layer at the surface even after calcination to 600 °C. This surface layer appears to be present at all temperatures between 300 and 600 °C, and it is the nanoparticles of MoO3 that are present at the lower temperature that react to form ferric molybdate, which underlies this surface layer. It is the MoOx layer on the Fe2(MoO4)3 underlayer that makes the surface active and selective for formaldehyde synthesis, whereas the iron oxide surface itself is a combustor. The material is both activated and improved in selectivity due to the dominance of the methoxy species on the Mo-doped material, as opposed to the much more stable formate, which is the main intermediate on Fe2O3

    Synthesis and Characterization of Rutile TiO2Nanopowders Doped with Iron Ions

    Get PDF
    Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 5–7 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO2into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence

    On the effects of doping on the catalytic performance of (La,Sr)coo 3 . A DFT study of CO oxidation

    No full text
    The effects of modifying the composition of LaCoO3 on the catalytic activity are predicted by density functional calculations. Partially replacing La by Sr ions has benefical effects, causing a lowering of the formation energy of O vacancies. In contrast to that, doping at the Co site is less effective, as only 3d impurities heavier than Co are able to stabilize vacancies at high concentrations. The comparison of the energy profiles for CO oxidation of undoped and of Ni-, Cu-m and Zn-doped (La,Sr)CoO3(100) surface shows that Cu is most effective. However, the effects are less spectacular than in the SrTiO3 case, due to the different energetics for the formation of oxygen vacancies in the two hosts
    • …
    corecore