48 research outputs found

    Incomplete Recovery of Pneumococcal CD4 T Cell Immunity after Initiation of Antiretroviral Therapy in HIV-Infected Malawian Adults

    Get PDF
    HIV-infected African adults are at a considerably increased risk of life-threatening invasive pneumococcal disease (IPD) which persists despite antiretroviral therapy (ART). Defects in naturally acquired pneumococcal-specific T-cell immunity have been identified in HIV-infected adults. We have therefore determined the extent and nature of pneumococcal antigen-specific immune recovery following ART. HIV-infected adults were followed up at 3, 6 and 12 months after initiating ART. Nasopharyngeal swabs were cultured to determine carriage rates. Pneumococcal-specific CD4 T-cell immunity was assessed by IFN-γ ELISpot, proliferation assay, CD154 expression and intracellular cytokine assay. S. pneumoniae colonization was detected in 27% (13/48) of HIV-infected patients prior to ART. The rates remained elevated after 12 months ART, 41% (16/39) (p = 0.17) and significantly higher than in HIV-uninfected individuals (HIVneg 14%(4/29); p = 0.0147). CD4+ T-cell proliferative responses to pneumococcal antigens increased significantly to levels comparable with HIV-negative individuals at 12 months ART (p = 0.0799). However, recovery of the pneumococcal-specific CD154 expression was incomplete (p = 0.0015) as were IFN-γ ELISpot responses (p = 0.0040) and polyfunctional CD4+ T-cell responses (TNF-α, IL-2 and IFN-γ expression) (p = 0.0040) to a pneumolysin-deficient mutant strain. Impaired control of pneumococcal colonisation and incomplete restoration of pneumococcal-specific immunity may explain the persistently higher risk of IPD amongst HIV-infected adults on ART. Whether vaccination and prolonged ART can overcome this immunological defect and reduce the high levels of pneumococcal colonisation requires further evaluation

    Naturally-Acquired Influenza-Specific CD4+ T-Cell Proliferative Responses Are Impaired in HIV-Infected African Adults

    Get PDF
    BACKGROUND Seasonal influenza has been associated with greater morbidity and mortality in AIDS patients. Highly-active antiretroviral therapy (HAART) has led to some reduction in influenza-related complications but the nature of naturally-acquired T-cell immunity to influenza virus in an African setting, and how this changes with immune reconstitution following HAART is unknown. We measured influenza-specific CD4(+) T-cell immunity in unimmunized HIV-infected Malawian adults and then investigated immune reconstitution following HAART. METHODS Peripheral blood mononuclear cells were isolated from HIV-infected and HIV-uninfected Malawian adults. CFSE proliferation and CD154 expression flow cytometry-based assays were used to measure influenza-specific CD4(+) T-cell immunity. RESULTS We found lower naturally-acquired proliferative influenza-specific CD4(+) T-cell responses in AIDS patients that was also present in asymptomatic HIV-infected adults with relatively high CD4 counts (>350 cells/µl). Influenza-specific CD4(+) T-cell immune reconstitution in HIV-infected patients on HAART for 12 months was poor despite a marked reduction in viral load and an increase in CD4 count. This poor immune reconstitution was characterised by a low influenza-specific proliferative CD4(+) T-cell response and reduced proportions of CD154-expressing influenza-specific CD4(+) T-cells in peripheral blood. CONCLUSION Our data suggest that asymptomatic HIV-infected adults may also be at risk of influenza-related complications and that HAART alone may not circumvent this risk in AIDS patients. This study highlights the need to identify possible interventions early in HIV infection to reduce the risk of influenza and to intensify influenza surveillance in these susceptible African populations

    Evaluation of high-throughput genomic assays for the Fc gamma receptor locus

    Get PDF
    Cancer immunotherapy has been revolutionised by the use of monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics

    Modulation of nasopharyngeal innate defenses by viral coinfection predisposes individuals to experimental pneumococcal carriage

    Get PDF
    Increased nasopharyngeal colonization density has been associated with pneumonia. We used experimental human pneumococcal carriage to investigate whether upper respiratory tract viral infection predisposes individuals to carriage. A total of 101 healthy subjects were screened for respiratory virus before pneumococcal intranasal challenge. Virus was associated with increased odds of colonization (75% virus positive became colonized vs. 46% virus-negative subjects; P=0.02). Nasal Factor H (FH) levels were increased in virus-positive subjects and were associated with increased colonization density. Using an in vitro epithelial model we explored the impact of increased mucosal FH in the context of coinfection. Epithelial inflammation and FH binding resulted in increased pneumococcal adherence to the epithelium. Binding was partially blocked by antibodies targeting the FH-binding protein Pneumococcal surface protein C (PspC). PspC epitope mapping revealed individuals lacked antibodies against the FH binding region. We propose that FH binding to PspC in vivo masks this binding site, enabling FH to facilitate pneumococcal/epithelial attachment during viral infection despite the presence of anti-PspC antibodies. We propose that a PspC-based vaccine lacking binding to FH could reduce pneumococcal colonization, and may have enhanced protection in those with underlying viral infection

    Defective pneumococcal-specific Th1 responses in HIV-infected adults precedes a loss of control of pneumococcal colonization

    No full text
    Background. African adults infected with human immunodeficiency virus (HIV) have high rates of pneumococcal colonization and invasive disease. Here we have investigated the possibility that HIV disrupts the normal balance of pneumococcal-specific helper T cell (Th) 1/Th17 immunity to colonization, resulting in a more permissive nasopharyngeal niche. Methods. One hundred thirty-six HIV-infected and -uninfected Malawian adults were enrolled in the study. Changes in rates and composition of nasopharyngeal pneumococcal colonization were analyzed using microarray. The underlying pneumococcal-specific Th1/Th17 responses associated with altered pneumococcal colonization were investigated using flow cytometry. Results. We find that pneumococcal carriage is only modestly increased in asymptomatic HIV-infected Malawian adults but that colonization rates rise dramatically during symptomatic disease (HIV(neg) 13%, HIV(asy) 19%, and HIV(sym) 38%). These rates remain high in subjects established on antiretroviral therapy (ART): 33% (at 6–12 months) and 52% (at 18 months), with HIV-infected individuals carrying a broader range of invasive and noninvasive serotypes compared with HIV-negative controls. The frequency of multiple serotype carriage (>1 serotype HIV(neg) 26%, HIV(asy) 30%, HIV(sym) 31%, HIV(ART) 31%) is not affected. These changes in colonization are associated with generalized CD4 T-cell depletion, impaired antigen-specific proliferation, and a defect in pneumococcal-specific T-cell interferon-γ but not interleukin 17 production. Conclusions. These data reveal the persistently poor control of pneumococcal colonization in HIV-infected adults following immune ART-mediated reconstitution, highlighting a potential reservoir for person-to-person spread and vaccine escape. Novel approaches to control colonization either through vaccination or through improvements in the quality of immune reconstitution are required
    corecore