578 research outputs found

    High Spectral Resolution Measurement of the Sunyaev–Zel'dovich Effect Null with Z-Spec

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect spectrum crosses through a null where ΔT_CMB = 0 near ν_0 = 217 GHz. In a cluster of galaxies, ν0 can be shifted from the canonical thermal SZ effect value by corrections to the SZ effect scattering due to the properties of the inter-cluster medium. We have measured the SZ effect in the hot galaxy cluster RX J 1347.5 – 1145 with Z-Spec, an R ~ 300 grating spectrometer sensitive between 185 and 305 GHz. These data comprise a high spectral resolution measurement around the null of the SZ effect and clearly exhibit the transition from negative to positive ΔT_CMB over the Z-Spec band. The SZ null position is measured to be ν_0 = 225.8 ± 2.5(stat.) ± 1.2(sys.) GHz, which differs from the canonical null frequency by 3.0σ and is evidence for modifications to the canonical thermal SZ effect shape. Assuming the measured shift in ν0 is due only to relativistic corrections to the SZ spectrum, we place the limit kT_e = 17.1 ± 5.3 keV from the zero-point measurement alone. By simulating the response of the instrument to the sky, we are able to generate likelihood functions in {y_0, T_e, v_pec} space. For v_pec = 0 km s^(–1), we measure the best-fitting SZ model to be y_0 = 4.6^(+0.6)_(–0.9) × 10^(–4), T_e, 0 = 15.2^(+12)_(–7.4) keV. When v pec is allowed to vary, a most probable value of v_pec = + 450 ± 810 km s^(–1) is found

    Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the international immuno-oncology biomarker working group on breast cancer.

    Get PDF
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer

    A Correlation Between Galaxy Morphology and MgII Halo Absorption Strength

    Get PDF
    (Abridged) We compared the quantified morphological properties of 37 intermediate redshift MgII absorption selected galaxies to the properties of the absorbing halo gas, observed in the spectra of background quasars. The galaxy morphologies were measured using GIM2D modeling of Hubble Space Telescope WFPC-2 images and the absorbing gas properties were obtained from HIRES/Keck and UVES/VLT quasar spectra. We found a 3.1 sigma correlation between galaxy morphological asymmetries normalized by the quasar-galaxy projected separations, A/D, and the MgII rest-frame equivalent widths. Saturation effects cause increased scatter in the relationship with increasing W_r(2796). We defined a subsample for which the fraction of saturated pixels in the absorption profiles is f_sat<0.5. The correlation strengthened to 3.3 sigma. We also find a paucity of small morphological asymmetries for galaxies selected by MgII absorption as compared to those of the general population of field galaxies, as measured in the Medium Deep Survey. The K-S probability that the two samples are drawn from the same galaxy population is ruled out at a 99.8% confidence level. The A/D-W_r(2796) correlation suggests a connection between the processes that perturb galaxies and the quantity of gas in their halos, normalized by the impact parameter. Since the perturbations are minor, it is clear that dramatic processes or events are not required for a galaxy to have an extended halo; the galaxies appear "normal". We suggest that common, more mild processes that populate halos with gas, such as satellite galaxy merging, accretion of the local cosmic web, and longer-range galaxy-galaxy interactions, consequently also induce the observed minor perturbations in the galaxies.Comment: Accepted for publication in the Astrophysical Journa

    Geodetic VLBI Observations of EGRET Blazars

    Get PDF
    We present VLBI observations of the EGRET quasars 0202+149, CTA 26, and 1606+106, as well as additional analysis of VLBI observations of 1156+295 presented in Piner & Kingham (1997b). We have produced 8 and 2 GHz VLBI images at 11 epochs, 8 epochs, and 12 epochs, spanning the years 1989 to 1996, of 0202+149, CTA 26, and 1606+106 respectively. The VLBI data have been taken from the Washington VLBI correlator's geodetic database. We have measured the apparent velocities of the jet components and find that CTA 26 and 1606+106 are superluminal sources, with average apparent speeds of 8.9 and 2.9 h^{-1}c respectively (H_{0}=100h km s^{-1} Mpc^{-1}, q_{0}=0.5). The components in 0202+149 are stationary, and we identify this source as a compact F double. These sources all have apparently bent jets, and we detected non-radial motion of components in CTA 26 and 1156+295. We have not yet detected any components emerging subsequent to the gamma-ray flares in CTA 26, 1156+295, and 1606+106, and we derive lower limits on the ejection times of any such components. The misalignment angle distribution of the EGRET sources is compared to the distribution for blazars as a whole, and we find that EGRET sources belong preferentially to neither the aligned nor the misaligned population. We also compare the average values for the apparent velocities and Doppler beaming factors for the EGRET and non-EGRET blazars, and find no significant differences. We thus find no indication, within the measurement errors, that EGRET blazars are any more strongly beamed than their counterparts which have not been detected in gamma-rays.Comment: 47 pages, including 13 figures; accepted for publication in the Astrophysical Journa

    Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report the detection of an extremely bright (\sim37 mJy at 1100 μ\mum and \sim91 mJy at 880 μ\mum) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 μ\mum observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 μ\mum and SMA 880 μ\mum observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of \sim 4^{\prime\prime}) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 σ\sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z3.4z \sim 3.4 behind a foreground, optically visible (but red) galaxy at z1.4z \sim 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (LIRL_{\rm IR}) and star formation rate (SFR) are 6×10136 \times 10^{13} LL_{\odot} and 11000 MM_{\odot} yr1^{-1}, respectively, assuming that the LIRL_{\rm IR} is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale (3×1073 \times 10^{7} yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.Comment: 18 pages, 13 figure

    Minimally Invasive Mitral Valve Surgery III: Training and Robotic-Assisted Approaches.

    Get PDF
    Minimally invasive mitral valve operations are increasingly common in the United States, but robotic-assisted approaches have not been widely adopted for a variety of reasons. This expert opinion reviews the state of the art and defines best practices, training, and techniques for developing a successful robotics program

    Minimally Invasive Mitral Valve Surgery I: Patient Selection, Evaluation, and Planning.

    Get PDF
    Widespread adoption of minimally invasive mitral valve repair and replacement may be fostered by practice consensus and standardization. This expert opinion, first of a 3-part series, outlines current best practices in patient evaluation and selection for minimally invasive mitral valve procedures, and discusses preoperative planning for cannulation and myocardial protection

    Minimally Invasive Mitral Valve Surgery II: Surgical Technique and Postoperative Management.

    Get PDF
    Techniques for minimally invasive mitral valve repair and replacement continue to evolve. This expert opinion, the second of a 3-part series, outlines current best practices for nonrobotic, minimally invasive mitral valve procedures, and for postoperative care after minimally invasive mitral valve surgery

    The source counts of submillimetre galaxies detected at 1.1 mm

    Get PDF
    The source counts of galaxies discovered at sub-millimetre and millimetre wavelengths provide important information on the evolution of infrared-bright galaxies. We combine the data from six blank-field surveys carried out at 1.1 mm with AzTEC, totalling 1.6 square degrees in area with root-mean-square depths ranging from 0.4 to 1.7 mJy, and derive the strongest constraints to date on the 1.1 mm source counts at flux densities S(1100) = 1-12 mJy. Using additional data from the AzTEC Cluster Environment Survey to extend the counts to S(1100) ~ 20 mJy, we see tentative evidence for an enhancement relative to the exponential drop in the counts at S(1100) ~ 13 mJy and a smooth connection to the bright source counts at >20 mJy measured by the South Pole Telescope; this excess may be due to strong lensing effects. We compare these counts to predictions from several semi-analytical and phenomenological models and find that for most the agreement is quite good at flux densities > 4 mJy; however, we find significant discrepancies (>3sigma) between the models and the observed 1.1 mm counts at lower flux densities, and none of them are consistent with the observed turnover in the Euclidean-normalised counts at S(1100) < 2 mJy. Our new results therefore may require modifications to existing evolutionary models for low luminosity galaxies. Alternatively, the discrepancy between the measured counts at the faint end and predictions from phenomenological models could arise from limited knowledge of the spectral energy distributions of faint galaxies in the local Universe.Comment: 16 pages, 3 figures, 4 tables; accepted for publication in MNRA

    Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report the detection of an extremely bright (\sim37 mJy at 1100 μ\mum and \sim91 mJy at 880 μ\mum) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 μ\mum observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 μ\mum and SMA 880 μ\mum observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of \sim 4^{\prime\prime}) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 σ\sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z3.4z \sim 3.4 behind a foreground, optically visible (but red) galaxy at z1.4z \sim 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (LIRL_{\rm IR}) and star formation rate (SFR) are 6×10136 \times 10^{13} LL_{\odot} and 11000 MM_{\odot} yr1^{-1}, respectively, assuming that the LIRL_{\rm IR} is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale (3×1073 \times 10^{7} yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.Comment: 18 pages, 13 figure
    corecore