12 research outputs found

    Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada

    Get PDF
    This research is funded by the Canadian Mining Research Organization (CAMIRO) and an NSERC CRD grant. Research is also funded by the NSERC-Altius Industrial Research Chair in Mineral Deposits, funded by NSERC, Altius Resources Inc. and the Development Corporation of Newfoundland and Labrador.Metalliferous sedimentary rocks (mudstones, exhalites) associated with the Cambrian precious metal-bearing Lemarchant Zn-Pb-Cu-Au-Ag-Ba volcanogenic massive sulphide (VMS) deposit, Tally Pond volcanic belt, precipitated both before and after VMS mineralization. Sulphur and Pb isotopic studies of sulphides within the Lemarchant exhalites provide insight into the sources of S and Pb in the exhalites as a function of paragenesis and evolution of the deposit and subsequent post-depositional modification. In situ S isotope microanalyses of polymetallic sulphides (euhedral and framboidal pyrite, anhedral chalcopyrite, pyrrhotite, galena and euhedral arsenopyrite) by secondary ion mass spectrometry (SIMS) yielded δ34S values ranging from −38.8 to +14.4 ‰, with an average of ∼ −12.8 ‰. The δ34S systematics indicate sulphur was predominantly biogenically derived via microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation and microbial disproportionation of intermediate S compounds. These biogenic processes are coupled and occur within layers of microbial mats consisting of different bacterial/archaeal species, i.e., sulphate reducers, sulphide oxidizers and those that disproportionate sulphur compounds. Inorganic processes or sources (i.e., thermochemical sulphate reduction of seawater sulphate, leached or direct igneous sulphur) also contributed to the S budget in the hydrothermal exhalites and are more pronounced in exhalites that are immediately associated with massive sulphides. Galena Pb isotopic compositions by SIMS microanalysis suggest derivation of Pb from underlying crustal basement (felsic volcanic rocks of Sandy Brook Group), whereas less radiogenic Pb derived from juvenile sources leached from mafic volcanic rocks of the Sandy Brook Group and/or Tally Pond group. This requires that the hydrothermal fluids interacted with juvenile and evolved crust during hydrothermal circulation, which is consistent with the existing tectonic model that suggests a formation of the Tally Pond belt volcanic rocks and associated VMS deposits in a rifted arc environment upon crustal basement of the Ediacaran age Sandy Brook Group and Crippleback Intrusive Suite. Combined S and Pb isotope data illustrate that sulphides within the deposit that are proximal to the vent contain a higher proportion of sulphur derived from thermochemical sulphate reduction (TSR), because hydrothermal fluids are enriched in H2S derived from TSR. They also have lower radiogenic Pb contributions, than sulphides occurring distal from mineralization. Hence, the TSR S and non-radiogenic Pb composition may provide an exploration vector in exhalites associated with similar VMS environments.PostprintPeer reviewe

    Styles, textural evolution, and sulfur isotope systematics of Cu-rich sulfides from the Cambrian Whalesback volcanogenic massive sulfide deposit, central Newfoundland, Canada

    Get PDF
    The Whalesback Cu-rich volcanogenic massive sulfide deposit in the Newfoundland Appalachians is a highly deformed deposit found on a steep limb of a closed and boudinaged overturned fold. The deposit was intensely deformed at low temperature but medium pressure (>175 MPa) during the accretion of the composite Lushs Bight oceanic tract-Dashwoods terrane onto the Humber margin at ca. 480 Ma. The ore mineralogy consists of chalcopyrite, pyrrhotite, and pyrite with lesser sphalerite and trace Ag, Bi, and Hg tellurides. Four styles of sulfide mineralization are present: (1) disseminated (5%); (2) vein (50%); (3) breccia (25%); and (4) semimassive to massive (20%). Independent of mineralization style, massive pyrite and pyrrhotite (and some chalcopyrite) are commonly parallel to main S2 schistosity in the deposit, whereas late chalcopyrite piercement veins occur at a high angle to S2. The progressive increase in pressure and temperature produced a remobilization sequence wherein sphalerite was the first sulfide phase to cross the brittle-ductile boundary, followed by pyrrhotite and, finally, chalcopyrite. Maximum temperature was not high enough for the pyrite to cross the brittle-ductile boundary. Instead, pyrite grains were incorporated and transported by pyrrhotite and chalcopyrite during the ductile remobilization events, rounding and fracturing them. Remobilization of the sulfides occurred mainly by plastic flow, but some solution transport and reprecipitation is locally observed. In situ secondary ion mass spectrometry sulfur isotope geochemistry of sulfides yielded values of δ34S ranging from 2.7‰ to 4.7‰ for pyrite, 2.1‰ to 4.0‰ for pyrrhotite, and 1.3‰ to 4.7‰ for chalcopyrite. Sulfur isotope modeling suggests that at least 60% of the sulfur was derived from leaching of igneous rocks (i.e., basalts), with the remainder derived from thermochemical sulfate reduction of seawater sulfate during alteration of the basalts by seawater. At the deposit scale, sulfur isotopes retained their original signature and did not reequilibrate during the secondary deformation and remobilization events.PostprintPeer reviewe

    Advanced energetic materials

    Get PDF

    Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits

    Get PDF
    The link between metal enrichment and the addition of a magmatic volatile phase in volcanogenic massive sulfide deposits and actively forming seafloor massive sulfide deposits remains poorly characterized. This is especially true when considering how metal, sulfur and fluid flux change with time. In this study, we combine in situ sulfur isotope (δ34S; n = 31) measurements with trace metal chemistry of pyrite (n = 143) from the Mala VMS deposit, Troodos, Cyprus. The aim of our study is to assess the links between volatile influx and metal enrichment and establish how, or indeed if, this is preserved at the scale of individual mineral grains. We classify pyrite based on texture into colloform, granular, disseminated and massive varieties. The trace metal content of different pyrite textures is highly variable and relates to fluid temperature and secondary reworking that are influenced by the location of the sample within the mound. The sulfur isotope composition of pyrite at Mala ranges from − 17.1 to 7.5‰ (n = 31), with a range of − 10.9 to 2.5‰ within a single pyrite crystal. This variation is attributed to changes in the relative proportion of sulfur sourced from (i) SO2 disproportionation, (ii) thermochemical sulfate reduction, (iii) the leaching of igneous sulfur/sulfide and (iv) bacterial sulfate reduction. Our data shows that there is no correlation between δ34S values and the concentration of volatile elements (Te, Se) and Au in pyrite at Mala indicating that remobilization of trace metals occurred within the mound

    Mineral Assemblages, Textures and In Situ Sulphur Isotope Geochemistry of Sulphide Mineralization from the Cyprus-Type Ice Volcanogenic Massive Sulphide (VMS) Deposit, Yukon, Canada

    No full text
    The Permian (~273⁻274 Ma) Ice volcanogenic massive sulphide (VMS) deposit represents a mound shaped Cyprus (mafic)-type VMS deposit (~4.5 Mt @ 1.5% Cu) hosted in basaltic rocks of Slide Mountain terrane. The deposit consists of massive sulphides that are underlain by a chlorite-sulphide-hematite-rich stringer pipe, and overlain by a hematite-(pyrite)-rich exhalative chert. The sulphides are divided into five facies: (1) pyrite-rich; (2) pyrite-bornite-rich; (3) pyrite-chalcopyrite-rich; (4) hematite-pyrite; and (5) stringer sulphide. The sulphides have a distinct paragenetic and textural evolution in the massive sulphide that reflect: (1) an early, low temperature stage (<250 °C dominated by Fe-Zn-Cu-rich mineralization; (2) an intermediate, high temperature stage (>300 °C) dominated by Cu-Fe-rich mineralization; and (3) a late, low temperature phase (<150 °C) dominated by Fe-rich mineralization. In situ sulphur isotope data pyrite and chalcopyrite (by secondary ion mass spectrometry (SIMS)) range from δ34S = +1.8‰ to +8.2‰, but vary as a function of paragenesis and temperature of deposition. Both early and late forming sulfides were dominated by sulphur from partial thermochemical sulphate reduction (TSR) of seawater sulfate, whereas intermediate, high temperature mineralization was dominated leached, igneous sulphur from basement rocks. These results are similar to modern seafloor vents and many ancient VMS deposits

    Otolith chemistry and redistributions of northern cod: evidence of Smith Sound-Bonavista Corridor connectivity

    No full text
    Stable oxygen isotope assays of otoliths (δThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Constraining temporal variations in metal and sulfur sources using high-resolution mineral-scale analysis of pyrite: evidence from the Brothers volcano, Kermadec arc, New Zealand

    No full text
    Variations in trace metal contents and sulfur isotope ratios (δ34S) within pyrite, at the scale of individual mineral grains, preserves a record of temporal fluctuations in the source of metals and sulfur as well as changes in the chemical composition and temperature of hydrothermal fluid during the evolution of the Brothers volcano, Kermadec arc, New Zealand. In this study, we analyzed pyrite from drill core recovered from two geochemically distinct hydrothermal systems at the Brothers volcano, the seawater-influenced NW Caldera (Site U1530) and magmatic-volatile-dominated Upper Cone (Site U1528) during the International Ocean Discovery Program’s Expedition 376. At the NW Caldera site, from 189 m below the seafloor, a seawater-derived hydrothermal fluid forming chlorite-rich alteration overprints early pyrophyllite + illite alteration. Within ~ 30 m of the seafloor at this same site, pyrite contains zones of high As content with a variable δ34S signature that ranges from -4.5 to 3.4‰ (n = 26). Values for δ34S > 0‰ record shallow mixing of seawater with upwelling hydrothermal fluids. In deeper parts of the system, but still within the chlorite-rich alteration zone, δ34S values > 0‰ are absent, indicating that relatively more sulfur is contributed from magmatic volatile degassing and SO2 disproportionation. In the pyrophyllite-rich alteration zone, pyrite contains Co-enriched cores that correspond to sharp changes in δ34S values from -5.3‰ to 4.6‰ (n = 68). Cobalt enrichment occurs in response to the mixing of seawater-derived hydrothermal fluid with Co-rich magmatic brines. At the Upper Cone site, a relatively constant supply of a low-salinity magmatic fluid results in pyrite grains that rarely exhibit any internal zonation in trace metal content. In pyrite where zonation does exist, a correlation between Cu and Sb and uniformly low δ34S values (< 0‰) indicates a link between metal enrichment, the pulsed degassing of magmatic volatiles, and SO2 disproportionation

    Trace metal and sulfur cycling in a hydrothermally active arc volcano: deep-sea drilling of the Brothers volcano, Kermadec arc, New Zealand

    No full text
    Brothers volcano, located on the Kermadec arc north of New Zealand, hosts two geochemically distinct hydrothermal systems. The NW Caldera and Upper Cone hydrothermal fields exhibit distinct fluid compositions that are significantly influenced by seawater and magmatic volatiles, respectively. In this study, we present trace metal chemistry and sulfur isotope compositions of pyrite within hydrothermally altered volcanic rocks recovered from drill cores at depths of up to 429 m below the seafloor collected during the International Ocean Discovery Program’s Expedition 376. Magmatic volatile-influenced alteration resulting in pyrophyllite ± natroalunite assemblages occurs at the Upper Cone and at the NW Caldera below 189 m. At the NW Caldera, a later seawater-derived hydrothermal fluid overprints magmatic volatile alteration forming chlorite-rich alteration. Pyrite at the Upper Cone is fine-grained, euhedral and enriched in Cu, As, Sb, Pb and Pt and has an average δ34S composition of − 5.5 ± 2.9‰ (1σ, n = 32). In contrast, pyrite associated with pyrophyllite-rich alteration at the older NW Caldera site is coarse-grained, subhedral and has higher Co, Se, Te, and Bi contents but a comparable average δ34S value of -4.8 ± 5.5‰ (1σ, n = 26). The difference in trace metal content between pyrite from pyrophyllite ± natroalunite assemblages at the NW Caldera and Upper Cone site indicates a change in the trace metal enrichment signature of pyrite with the age of the hydrothermal system. Pyrite from chlorite-rich alteration (NW Caldera) is depleted in Cu, Te and Bi relative to all magmatic volatile-influenced pyrite but has a similar average δ34S composition of − 4.6 ± 3.5‰ (1σ, n = 20). The similarity in trace metal enrichment signature and average δ34S composition of pyrite, regardless of associated alteration mineral assemblage shows that the initial magmatic volatile trace metal signature and sulfur isotope composition of pyrite is preserved during fluid overprinting. The lower content of Cu, Te, and Bi in pyrite from chlorite-rich alteration confirms the importance of seawater-derived hydrothermal fluids in metal mobilization and consequent formation of hydrothermal precipitates at the seafloor
    corecore