48 research outputs found

    Tropicalization of seagrass macrophytodetritus accumulations and associated food webs

    Get PDF
    Seagrass, systems export significant amounts of their primary production as large detritus (i.e. macrophytodetritus). Accumulations of exported macrophytodetritus (AEM) are found in many areas in coastal environment. Dead seagrass leaves are often a dominant component of these accumulations, offering shelter and/or food to numerous organisms. AEM are particular habitats, different from donor habitats (i.e. seagrass meadow, kelp or macroalgae habitats) and with their own characteristics and dynamics. They have received less attention than donor habitats despite the fact they often connect different coastal habitats, are the place of intense remineralization processes and shelter associated detritus food web. As for seagrass meadows themselves, AEM are potentially affected by global change and by tropicalization processes. Here, we review briefly general characteristic of AEM with a focus on Mediterranean Sea and Western Australia and we provide some hypotheses concerning their tropicalization in a near future. We conclude that AEM functioning could change either through: (1) declines in biomass or loss of seagrass directly due to increased ocean temperatures or increased herbivory from tropicalized herbivores; (2) increased degradation and processing of seagrass detritus within seagrass meadows leading to reduced export; (3) replacement of large temperate seagrass species with smaller tropical seagrass species; and/or (4) loss or changes to macroalgae species in neighboring habitats that export detritus. These processes will alter the amount, composition, quality, timing and frequency of inputs of detritus into ecosystems that rely on AEM as trophic subsidies, which will alter the suitability of AEM as habitat and food for invertebrates

    Editorial: Tropicalization in seagrasses: Shifts in ecosystem function

    Get PDF
    Seagrass meadows form highly productive and diverse ecosystems that provide a range of ecosystem services along coasts of most continents (Barbier et al., 2011; Nordlund et al., 2016), yet they continue to experience large losses through direct and indirect human disturbances (Waycott et al., 2009; Duarte et al., 2018). Like other coastal ecosystems, including coral reefs and kelp forests, seagrasses are showing strong negative responses to elevated ocean temperatures and heatwaves, in which rising temperatures exceed their thresholds for survival [...]

    Global patterns in seagrass herbivory: Why, despite existing evidence, there are solid arguments in favor of latitudinal gradients in seagrass herbivory

    Get PDF
    © 2020, Coastal and Estuarine Research Federation. The ecological paradigm that biological interactions are more intense in the tropics than in temperate or polar regions has existed since the mid-twentieth century, but several recent meta-analyses have provided scant evidence for latitudinal gradients in the intensity of herbivory. This contradictory evidence led us to carefully review the data and results of several of those papers that failed to find latitudinal gradients in rates of seagrass herbivory. To re-evaluate the arguments around the presence or absence of latitudinal gradients in herbivory in seagrass, we began by expanding the selection criteria to include more studies to compare the published latitudinal range of seagrass occurrences with the latitudes in which seagrass herbivory has been studied. We also compared the latitudinal range of known seagrass herbivores with the distribution of studies on seagrass herbivory. Finally, we investigated studies that provided seasonal data on net primary production and standing stock of seagrasses, which allowed an assessment of the relative amounts of production that could enter the seagrass grazing food web among latitudes and climatic regimes. Consistent with recent meta-analyses, we found little latitudinal effect on grazing rates. However, we argue that the following factors are likely to confound these findings and potentially mask latitudinal trends in seagrass herbivory: (1) the paucity of data available to test latitudinal trends in grazing rates at high latitudes; (2) the mismatch between the geographic distribution of important grazers and studies on seagrass herbivory; (3) the paucity of experimental studies from areas with little or no herbivory because few researchers would initiate a study on something not observed to be occurring; (4) the high level of seasonality in seagrass production in high latitudes, where seagrass production is very low or nonexistent in winter months; (5) the fact that temperate areas with Mediterranean climates behave very differently than temperate areas at similar latitudes with much greater seasonality, thereby making latitude a much less informative independent variable than annual range in temperature; and (6) anthropogenic disturbances, including the overharvesting to functional extinction of large seagrass herbivores in both temperate and tropical regions. Thus, while we currently cannot discount the lack of a latitudinal gradient in grazing intensity, we argue that the intensity of grazing is likely to be greater in the tropics than high-latitude regions where the carrying capacity of seagrass meadows is far less stable. Either way, there are clear gaps in our knowledge and ability to evaluate the role of grazing in seagrass ecosystems and inform future efforts to conserve and restore these extraordinarily valuable ecosystems

    Kelp-associated microbes facilitate spatial subsidy in a detrital-based food web in a shoreline ecosystem

    Get PDF
    Microbes are ubiquitous but our knowledge of their effects on consumers is limited in benthic marine systems. Shorelines often form hotspots of microbial and detritivore activity due to the large amounts of detrital macrophytes that are exported from other coastal ecosystems, such as kelp forests, and accumulate in these systems. Shoreline ecosystems therefore provide a useful model system to examine microbial-detritivore interactions. We experimentally test whether bacteria in the biofilm of kelp provide a bottom-up influence on growth and reproductive output of detritivores in shorelines where detrital kelp accumulates, by manipulating the bacterial abundances on kelp (Ecklonia radiata). The growth rates for both male and female amphipods (Allorchestes compressa) were greater in treatments containing bacteria than those in which bacteria were reduced through antibiotic treatment, and this effect was greater for males offered aged kelp. The proportions of ovigerous females were greater when reared on kelp with intact bacteria, indicating a more rapid reproductive development in the presence of more bacteria. Bacterial abundance had little to no influence on nutrient content and palatability of kelp, based on tissue toughness, nitrogen and carbon content and C:N ratio. Thus, the most likely pathway for a microbial effect on detritivores was through feeding on kelp-associated bacteria. Regardless of the pathway, kelp-associated microbes have a strong influence on the fitness of a highly abundant detritivore that feeds preferentially on E. radiata in shoreline systems, and therefore form a hidden trophic step in this “brown” food web and a hotspot of secondary production

    The role of inputs of marine wrack and carrion in sandy-beach ecosystems: A global review

    Get PDF
    Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide

    Accelerating tropicalization and the transformation of temperate seagrass meadows

    Get PDF
    Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more directconsumption- based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions

    Global dataset on seagrass meadow structure, biomass and production

    Get PDF
    Seagrass meadows provide valuable socio-ecological ecosystem services, including a key role in climate change mitigation and adaption. Understanding the natural history of seagrass meadows across environmental gradients is crucial to deciphering the role of seagrasses in the global ocean. In this data collation, spatial and temporal patterns in seagrass meadow structure, biomass and production data are presented as a function of biotic and abiotic habitat characteristics. The biological traits compiled include measures of meadow structure (e.g. percent cover and shoot density), biomass (e.g. above-ground biomass) and production (e.g. shoot production). Categorical factors include bioregion, geotype (coastal or estuarine), genera and year of sampling. This dataset contains data extracted from peer-reviewed publications published between 1975 and 2020 based on a Web of Science search and includes 11 data variables across 12 seagrass genera. The dataset excludes data from mesocosm and field experiments, contains 14271 data points extracted from 390 publications and is publicly available on the PANGAEA® data repository (10.1594/PANGAEA.929968; Strydom et al., 2021). The top five most studied genera are Zostera, Thalassia, Cymodocea, Halodule and Halophila (84 % of data), and the least studied genera are Phyllospadix, Amphibolis and Thalassodendron (2.3 % of data). The data hotspot bioregion is the Tropical Indo-Pacific (25 % of data) followed by the Tropical Atlantic (21 %), whereas data for the other four bioregions are evenly spread (ranging between 13 and 15 % of total data within each bioregion). From the data compiled, 57 % related to seagrass biomass and 33 % to seagrass structure, while the least number of data were related to seagrass production (11 % of data). This data collation can inform several research fields beyond seagrass ecology, such as the development of nature-based solutions for climate change mitigation, which include readership interested in blue carbon, engineering, fisheries, global change, conservation and policy

    Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Get PDF
    Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems
    corecore