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ABSTRACT

Sandybeaches are iconic interfaces that functionally link the oceanwith the land via the flowof organicmatter from the sea.These
cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of
detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up
on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how
wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches
and adjacent surf zones), which typically have little in situ primary production.We also examine the spatial scaling of the influence
of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research direc-
tions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decom-
posers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that
transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history andmorphological
characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often
creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are pro-
duced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the
subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant andpreferred food source formobile, semi-aquatic
invertebrates that channel imported algalmatter to predatory invertebrates, fish, and birds. The role of beach-castmarine carrion
is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures).
These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial
ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services,
they can be at variance with aesthetic perceptions resulting in widespread activities, such as ‘beach cleaning and grooming’. This
practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp
forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching
many beach ecosystems, likely causing flow-on effects for foodwebs and biodiversity. Similarly, future sea-level rise and increased
storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which bea-
ches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that
sandy beaches providewill increasingly need to encompass a greater societal appreciation and the safeguarding of ecological func-
tions reliant on beach-cast organic matter on innumerable ocean shores worldwide.
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I. INTRODUCTION

Shorelines are formed by various coastal landforms, includ-
ing sandy beaches, surf zones, different dune landscapes, sub-
tidal and intertidal rocky reefs, and sea cliffs. Shorelines are
also highly dynamic, being the interfaces between the ocean
and the land (Pilkey et al., 2011). The world’s coastlines have
been widely transformed for human uses, providing valuable
ecosystem services to society (Small & Nicholls, 2003; Bowen,
Frankic & Davis, 2006). Iconic sandy beaches cover 31% of
the world’s ice-free shoreline (Luijendijk et al., 2018), and rep-
resent highly valued economic, ecological, recreational and
cultural assets for societies worldwide (Barbier et al., 2011).
Beaches are dynamic landforms that are often heavily altered
by humans; rising sea levels and storm regimes can cause
massive and widespread changes to beaches and dunes
(Dugan et al., 2010; Vousdoukas et al., 2020).

Beaches form an ecotone between the ocean and land,
which is influenced by land and ocean inputs and processes.
Beaches and adjacent surf zones along open coasts are often
considered to have little in situ primary production, but their
fauna can nevertheless be abundant and diverse (Brown &
McLachlan, 1990). This paradox can be attributed, at least
partly, to the flow of organic matter from productive to less-
productive ecosystems (i.e. ‘spatial subsidies’ sensu Polis

et al., 1997). Sandy beach systems are highly permeable, lack-
ing significant barriers amongst habitats, whilst having strong
transport mechanisms driven by tides, waves and currents;
these forces can bring large organic matter (e.g. macroalgae,
seagrass, dead animals) ashore to become stranded on beaches
as wrack and carrion (Schlacher, Strydom&Connolly, 2013a;
Hyndes et al., 2014).
Organic matter stranded on beaches is typically derived

from reefs and seagrass beds that supply detached macro-
phytes (e.g. kelp thalli and seagrass leaves). It can also be in
the form of dead animals that wash ashore to become nutri-
tious carrion (i.e. the tissues of animal carcasses) beach-cast
on sandy shores. Many studies have focused on the production
and fate of organic matter in kelp forests (e.g. Krumhansl &
Scheibling, 2011; de Bettignies et al., 2013; Pedersen
et al., 2020) and seagrass meadows (see Heck Jr. et al., 2008).
Reviews show that these highly productive ecosystems can
export large quantities of organic matter via dissolved organic
nutrients or particulate organic matter to adjacent and more
distant ecosystems, including beaches (Heck Jr. et al., 2008;
Krumhansl & Scheibling, 2012; Hyndes et al., 2014). How-
ever, these reviews provide little detail on the fates of organic
matter in beach ecosystems. Inputs of detached macrophytes
(wrack) and carrion (dead animals) (Figs 1A and 2) may, how-
ever, provide critical ecosystem functions (physical, chemical
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and biological processes within ecosystems) on many sandy
beaches. These functions include: (1) providing a food subsidy
to support the high secondary production and biodiversity that
underpin rich coastal food webs (e.g. Crawley et al., 2009);
(2) recycling nutrients (e.g. Dugan et al., 2011); (3) enhancing
key habitats, such as fish nursery grounds (surf zone) and bird
nesting sites (e.g. Crawley, Hyndes & Ayvazian, 2006; Schla-
cher et al., 2013a); and (4) trapping wind-blown sand, thereby

limiting the extent of coastal erosion and facilitating beach
accretion and dune formation (e.g. Dugan, Hubbard &
Page, 2005).

The organisms and functions linked to marine matter cast
upon beaches were reviewed by Colombini & Chelazzi
(2003). Since then, significantly more research on these func-
tions has been undertaken in various regions across the globe.
Importantly, the effects of global warming on coastal systems

Fig. 1. Conceptual diagrams of wrack dynamics in beach ecosystems. (A) The principal sources, transport routes, and biological fates
of marine organic material cast upon sandy beaches; (B) disruption of natural processes caused by beach grooming and coastal
armouring; and (C) predicted consequence of climate change for the supply, type and biological fates of marine organic matter in
sandy beach ecosystems. POM, particulate organic matter. Diagrams created using IAN Image Library (http://ian.umces.edu).
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that supply organic material to beaches, and on beaches
themselves, are now better understood (Vitousek,
Barnard & Limber, 2017; Smale et al., 2019). Indeed, marine
heatwave events and subsequent poleward shifts in the distri-
bution of tropical grazers have led to ecosystem shifts from
kelp forests to barrens in parts of the world (Smale
et al., 2019), which has immense ramifications for ecosystems
relying on kelp as subsidies. Changes to beach structure and

habitat availability through erosion, sea-level rise, storms,
and coastal development (Lee et al., 2018; Dugan
et al., 2008) strongly affect the ability of drift material to flow
onto and be retained in these dynamic ecosystems. In addi-
tion, management activities, such as grooming, that actively
remove wrack from beaches used for tourism, impact
wrack-associated biota and processes (e.g. Schooler,
Dugan & Hubbard, 2019). Furthermore, introductions of

Fig. 2. Wrack, scavengers and human disturbance on sandy beaches. Wrack on beaches in (A) Cape Town, South Africa
(photograph L. Harris); (B) Santa Barbara County, USA (photograph J. Dugan); (C) Salina Bay, Malta (photograph M. Mateo);
and (D) Perth, Australia (photograph G. Hyndes). Dingo (E) and white-bellied sea eagle (F) scavenging on carrion on beaches near
Brisbane, Australia (photographs A. Olds), and beach cleaning on beaches in (G) Brisbane, Australia (photograph A. Olds) and
(H) Carpinteria, USA (photograph J. Dugan).
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invasive species through global warming or other human-
induced mechanisms (e.g. Jiménez et al., 2015) are likely to
influence the supply and form of organic inputs to beach
ecosystems.

Here, we review and synthesise the existing knowledge on
the ecosystem functions of wrack and carrion in sandy-beach
ecosystems. We also outline knowledge gaps and identify pri-
orities for future research. We focus mainly on the dynamics
and ecological pathways of marine matter becoming
stranded on ocean sandy shores, including the supply, reten-
tion, and processing of macrophytes and carrion, and how
matter can be transferred inland or back to sea with or with-
out alteration. We reviewed the literature based on searches
in Elsevier Scopus and Clarivate Web of Knowledge using the
terms (‘beach*’ OR ‘shore’ OR ‘surf zone’) AND (‘wrack’
OR ‘carrion’ OR ‘allochthonous’ OR ‘beach-cast’ OR
‘drift’ OR ‘detritus’ OR ‘kelp’ OR ‘seagrass’). Search
results were supplemented with references cited in
Colombini & Chelazzi (2003), and papers from the authors’
personal collections. This process yielded 336 articles that
report various aspects of wrack or carrion in sandy-beach
ecosystems, with 245 of those papers published after
Colombini & Chelazzi (2003).

We first summarise the global distribution of the research
effort and the focal themes. Secondly, we provide an over-
view of the main forms and amount of wrack and carrion
deposited on beaches and adjacent surf zones. We then
examine several topics concerning the dynamics and influ-
ence of wrack and carrion subsidies to beaches, specifically:
(1) factors influencing the availability, deposition and reten-
tion of these subsidies; (2) the role of subsidies in regulating
faunal abundance and biodiversity; (3) the fate of wrack
and carrion, particularly their roles in beach food webs;
(4) the spatial scaling of subsidy effects in sandy-beach ecosys-
tems and across the broader seascape and landscape; and
(5) the influence of anthropogenic changes and management
interventions on wrack and carrion dynamics. Finally, we
identify key knowledge gaps to guide future research.

II. THE CURRENT STATE OF KNOWLEDGE

(1) Thematic areas and the geography of the global
research effort

Of the 336 papers that examined various aspects of wrack or
carrion in sandy-beach ecosystems, 89% focused on the
beach, with fewer studies from the surf zone or waters adja-
cent to sandy beaches (see Table S1). Three thematic areas
dominate the research effort (Table 1, Fig. 3): (1) spatial or
temporal patterns in the amount of wrack (‘wrack dynamics’,
36%); (2) spatial or temporal patterns in the abundance of
fauna (‘fauna dynamics’, 33%); and (3) trophic ecology
(28%). Themes with moderate research focus include popu-
lation biology of fauna in wrack (16%), and chemical compo-
sition and processes or the nutrient dynamics of wrack (12%).
Only 10% of studies examined distribution patterns of

carcasses or carrion on beaches (‘carrion and carcass dynam-
ics’). Similarly, only 9% of studies examined human use, such
as harvesting kelp for food products or biofuel and human
impacts such as the effects of beach grooming on wrack-
associated fauna. Few studies (7%) examined environmental
processes and influences, including factors that affect the
amount and composition of wrack on beach systems. Even
fewer (only 5%) looked at decomposition and microbial pro-
cesses in wrack, and a small number of studies (<2%) exam-
ined topics such as invasion biology, human health, or
genetics (Table 1).

We found few studies (N = 10) published before the 1980s.
The number of published studies almost doubled from
42 during the 1980s to 76 during the 2000s, doubling again
to 165 articles during the 2010s. All but four studies exam-
ined aspects of sandy beach ecosystems rather than beaches
with larger sediments such as cobbles and boulders – most
of these studies sampled in higher latitude regions (>40�N
or S). The majority of research on wrack or carrion has been
carried out in the USA (58 studies), Australia (53), Spain (30),
Canada (21), and UK and New Zealand (20 each) (Fig. 3).
Countries with moderate research effort (7–15 studies)
include Italy, South Africa, Chile, and Brazil. Notable areas
with significant sandy-beach shorelines with a paucity of

Table 1. Themes addressed in the literature on beach-cast
organic matter (plant wrack and animal carrion). The total
number of studies identified was 336, but many papers investi-
gated more than one theme. See Table S1 for full list of publi-
cations and theme designations.

Theme # studies %

Wrack dynamics (temporal and spatial variability) 121 36.0
Faunal dynamics (temporal and spatial variability) 111 33.0
Trophic ecology 94 28.0
Population biology 54 16.1
Chemical composition and processes* 42 12.5
Carrion and carcass dynamics 32 9.5
Human use and impacts 31 9.2
Environmental processes and influences 23 6.8
Decomposition and microbial processes** 16 4.8
Dispersion of sources*** 7 2.1
Human health 6 1.8
Invasion biology 5 1.5
Taxonomic inventories**** 5 1.5
Hydrodynamics 4 1.2
Influence on dunes 4 1.2
Genetics (population genetics and phylogenetics) 3 0.9
Methods 3 0.9
Restoration 3 0.9
Fauna physiology 1 0.3
Movement of fauna 1 0.3
Sediment transport 1 0.3

*Forms and concentrations of nutrients and nutrient cycling.
**Biomass loss of wrack or carrion, and/or microbial processes
leading to those losses.
***Export mechanisms for the dispersal of wrack or carrion from
donor systems.
****Inventory of algal or faunal taxa, or new records.
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studies on wrack and carrion inputs include most of the tro-
pics, such as the Caribbean, central and north Africa, the
Arabian Peninsula, southeast Asia and South America
(except Chile and Brazil) (Fig. 3). While several studies have
been carried out in the polar regions, most beaches in these
studies comprised coarser sediment grain, e.g. shingles or
boulders (Crafford & Scholtz, 1987; Chown, 1996; Lastra
et al., 2014).

(2) Global patterns in standing stock of wrack on
beaches

We found over 60 papers that quantified the amount or com-
position of wrack on sandy beaches or in adjacent surf zones.
However, the metric used to report the amount of wrack was
variable, including volume (l) or wet or dry mass (g or kg) of
wrack within a linear metre or square metre of beach.
Because the most common unit has been kg wet weight
(WW) per linear metre of beach, we use this measure to
examine global patterns in standing stock. However, even
for this metric, the number of studies is low. Based on papers
allowing data from multiple sites or seasons to be directly
extracted, or by converting extracted dry mass estimates
where conversion factors were available, the average biomass
of wrack on beaches varies considerably from 0.1 to 325 kg
WW m−1 (Fig. 4). Exceptionally high biomass (>100 kg
WW m−1) has been recorded on beaches in the Mediterra-
nean Sea, south-western Australia, Argentina and western

Canada. However, inconsistencies in the metric used to
report wrack biomass reduce the pool of comparable data
and make comparisons across regions challenging. To facili-
tate such comparisons, we recommend that future studies
provide sufficient data (e.g. beach/surf zone width length,
volume to biomass conversions) to allow standing stock (wet
mass) per unit area to be calculated.
The composition of wrack in sandy-beach ecosystems var-

ies geographically, but often is dominated by macroalgae,
particularly kelp species, and seagrasses (Fig. 4). At a global
scale, major factors that influence biomass and composition
of wrack include the offshore benthic substrate type and the
associated distribution, productivity rate and composition
of coastal primary producers (seagrass, kelp, etc.) as potential
sources of wrack macrophytes. For instance, kelp forests span
temperate to arctic regions. Therefore, kelp is a major input
of wrack along the coasts of cooler waters, particularly the
western USA, Chile, southern Africa and New Zealand,
and a substantial input in southern Australia (Fig. 4). Domi-
nant taxa include Durvillea, Ecklonia, Lessonia, Macrocystis and
Nereocystis. In comparison, seagrasses span boreal to tropical
regions, and form a major component of wrack along coast-
lines in the Mediterranean and Caribbean Seas, East Africa,
and Australia (Fig. 4), with Posidonia, Zostera, Cymodocea, Halo-
dule, Halophila or Thalassia being the main genera. Indeed,
seagrass is the only form of wrack on the beaches in the Med-
iterranean Sea, where Posidonia oceanica can form major ‘ban-
quettes’ (wrack deposits). In the northern hemisphere (the

Fig. 3. Global distribution of studies (N = 336) classified by the main theme with respect to wrack and carrion on sandy beaches and
in surf zones. Pie charts illustrate the different themes of published studies, with the size indicating the total number of studies for a
region. Note that more than one theme could be covered by each paper, but the number of studies in each region reflects the total
number of papers regardless of theme. See Table 1 for more detail on themes.
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Baltic Sea,Western Europe, Caribbean Sea and west coast of
North America) and in Argentina, other forms of macroalgae
(red, green and non-kelp brown algae) also form significant
components of wrack (Fig. 4).

Besides the inflow of macrophytes, carrion (dead inverte-
brates, fish, birds, and mammals as large as whales) can be
numerous on beaches, when animals that die at sea wash
ashore (Sikes & Slowik, 2010). However, few studies have
focused on carrion or animal carcasses compared to beach-
cast macrophytes (Table 1, Fig. 3), possibly reflecting: (1) a
lower proportion of carrion compared to wrack; (2) more epi-
sodic deposition and patchy distribution; (3) more rapid con-
sumption and removal by scavengers; or (4) a reluctance by
researchers to work on decomposing animal bodies.

(3) Factors influencing standing stocks of wrack

The standing stock of wrack on sandy-beach systems is highly
dynamic, both in space and time. Wrack biomass can range
over 1–4 orders of magnitude across locations within a region
(Tarr & Tarr, 1987; Dugan et al., 2003, 2011; Barreiro
et al., 2011; Liebowitz et al., 2016; Holden et al., 2018a;
Reimer et al., 2018; Schooler et al., 2019). Similarly, standing
stock may show temporal variation from no visible

accumulation to tens or thousands of grams dry mass per
square metre, within hours to days (Ruiz-Delgado
et al., 2016b; Vieira et al., 2016), and across years (Barreiro
et al., 2011; Revell, Dugan & Hubbard, 2011; Jiménez
et al., 2015; Liebowitz et al., 2016; Holden et al., 2018a).
Wrack dynamics are principally influenced by the input,
accumulation, and export of material. Several factors shape
these dynamics, including: (1) the types and strength of phys-
ical forces that transport material; (2) the geomorphology of
beaches; (3) the broader landscape context of beaches; and
(4) the characteristics or traits of the donor system (Table 2).

Various physical forces (e.g. tides, waves, currents, wind)
transport material onshore. It follows that variation in phys-
ical forces results in differences in the deposition and resus-
pension of wrack on sandy beaches, operating at timescales
from hours to weeks and over distances of hundreds of metres
to hundreds of kilometres (Table 2, Fig. 5). Rising tides tend
to remove wrack from beaches, while falling tides are more
conducive to intertidal deposition of buoyant material
(Fig. 1A; Zobell, 1971; Orr et al., 2005). Spring high tides also
remove wrack (Zobell, 1971) or shift wrack deposits up-shore
towards the base of dunes or bluffs backing the beach. Strong
seasonal patterns of kelp deposition are often related to
changes in wave climate (Zobell, 1971; Revell et al., 2011).

Fig. 4. Global patterns in wrack composition (N = 43) and wet mass (WW; N = 27) of wrack (kg WW wrack m−1 of coastline) on
beaches and in surf zones based on published papers. Numbers in plain text to the right of each pie chart indicate the number of
studies. The text in italics below the pie charts indicates the average biomass in each region, while the numbers in parentheses to
the right of the text indicates the number of studies that provided the data. Note that for a study to be included, data needed to be
provided for at least three sites or times. Wrack composition was based on wet and dry mass and volume data, while biomass data
were based on studies where mass was either provided or data could be converted to wet mass per linear metre of coastline.
Distribution of seagrass from UNEP-WCMC seagrass maps based on Green & Short (2003), while kelp distributions are based on
Filbee-Dexter & Wernberg (2018).
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For example, storms generated at monthly to annual time-
scales (Fig. 5) uproot and transport large amounts of macro-
phytes to become drift material deposited on beaches
(Zobell, 1971;Revell et al., 2011; Liebowitz et al., 2016).

However, the effects of storms on the supply can be modified
by changes in the life-history traits of potential wrack mate-
rial in donor systems. For instance, early-season storms can
dislodge and transport large amounts of macrophytes,

Table 2. Factors that either positively or negatively affect the deposition and retention of wrack on beaches.

Factor Description References

State of donor ecosystem
Standing stock Biomass of subsidy and availability for export de Bettignies et al., 2013; Krumhansl &

Scheibling (2011); Pedersen et al.
(2020)

Senescence/growth Primary productivity, biomass availability/ turnover/
nutritional condition and availability for export

Rodriguez et al. (2013, 2016)

Macrophyte phenology Annual versus perennial, seasonal cycles of export Hamilton et al. (2020)
Management Direct harvest, grooming, fisheries, marine protected areas,

biomass available for export
Dugan & Hubbard (2010)

Characteristic of beach
Proximity to donor ecosystems Rocky reef, kelp forest, seagrass bed, estuary, rocky intertidal Orr et al. (2005); Reimer et al. (2018);

Liebowitz et al. (2016)
Beach morphology Width of zones and slopes affect delivery and retention Orr et al. (2005); Revell et al. (2011);

Barreiro et al. (2011); Wickham et al.
(2020)

Beach orientation Shore orientation relative to prevailing swell and currents
affects delivery and retention

Orr et al. (2005); G�omez et al. (2013)

Back beach type Retention and fate of wrack varies among dune-, cliff- and
seawall-backed shores

Dugan et al. (2008); Heerhartz et al.
(2014)

Beach management Grooming and armouring alter retention and fate Dugan &Hubbard (2010); Schooler et al.
(2019)

Sediment supply/budget Availability and resilience of beach habitat affects retention Zoulas & Orme (2007); Orme et al.
(2011); Griggs & Patsch (2018)

Disturbances
Storm events Changes in wave height affect donor and recipient

ecosystems through removal and erosion
Barreiro et al. (2011); Reed et al. (2011)

Storm season Wave-driven removal of substrate and subsidies Cavanaugh et al. (2011); Reed et al.
(2011)

Climate events El Nino, oceanographic oscillations, marine heatwaves, etc.
change primary production, supply and dynamics of
recipient ecosystem

Cavanaugh et al. (2011); Revell et al.
(2011); Thomsen et al. (2019); Strydom
et al. (2020)

Climate change Increased ocean temperature and sea-level rise: warming
impacts kelp forests/seagrass beds and sea-level rise causes
loss of beach habitat

Jordà et al. (2012); Krumhansl et al.
(2016); Bell et al. (2018); Cavanaugh
et al. (2019)

Overgrazing Effect on standing stock and resilience, urchins and urchin
barrens, biomass available for export

Rose et al. (1999); Ling et al. (2015, 2019);
Rogers-Bennett & Catton (2019)

Invasive species Outcompete natives, altered life cycles and biomass
production/export and food quality

Marks, Reed & Holbrook (2020); Schiel
et al. (2018)

Ocean processes Drivers of exchanges

Tides Daily and semi-lunar tides affect delivery and retention on beaches Zobell (1971); Revell et al. (2011); Orr
et al. (2005)

Wave climate Event-, season- and climate-driven wave dynamics affect donor (loss of
biomass, whole plants) and recipient (wrack biomass dynamics and beach
erosion/rotation/retention) ecosystems

Zobell (1971); Revell et al. (2011);
Liebowitz et al. (2016)

Currents Transport and delivery of macrophytes to beaches. Can move wrack along
and on and off the beach

Orr et al. (2005); G�omez et al. (2013);
Liebowitz et al. (2016)

Sea level rise Erosion and long-term loss of recipient beach habitat zones affects
retention of wrack

Myers et al. (2019)

Wind Surface currents and erosion processes affect both donor and recipient
ecosystems, wrack burial and transport inland

Rossi & Underwood (2002); Hammann
& Zimmer (2014); Liebowitz et al.
(2016); Del Vecchio et al. (2017)
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resulting in less material being available when storms occur
later in the growing season (e.g. Zobell, 1971). However,
wrack supply is further complicated by differences in the
overall life histories among primary producers in the donor
systems. Some kelp species are annuals (e.g. Nereocystis), while
others are perennials (e.g.Macrocystis), and some macroalgae
senesce as part of their life cycle (e.g. Sargassum). Supply is also
influenced by ocean-scale to global atmospheric and oceanic
events, such as El Nino Southern Oscillation (ENSO) events
(Seymour, 2003) or heatwave events and broader ocean
warming (Wernberg et al., 2019), occurring over timescales
of years to thousands of years and spatial scales of tens to tens
of thousands of kilometres (Fig. 5).

The geomorphology (e.g. slope, width) and aspect (orien-
tation) of beaches influence standing stocks of wrack
(Table 2), primarily by altering the capacity to retain drift
material (Revell et al., 2011; Liebowitz et al., 2016). For exam-
ple, Barreiro et al. (2011) showed that small, wave-sheltered
beaches retain higher amounts of wrack than more exposed
beaches in Spain, while deposition rates of buoyant material
can differ substantially between windward and leeward
shores (Lastra et al., 2014). Wrack retention can also be influ-
enced by the elevation, and the width and slope of the drier,
upper part of beaches (Zobell, 1971; Revell et al., 2011;
Liebowitz et al., 2016). Similarly, substrate type influences
the retention of wrack along shorelines. Consolidated rocky
shores retain far less wrack than shores comprising sand, cob-
ble or boulders (Wickham et al., 2020). Furthermore, cobble
beaches appear to retain more wrack than gravel or sandy
beaches (Orr et al., 2005). In addition, coastal armouring
structures (seawalls, revetments) that reduce beach width

and eliminate upper beach zones have been shown to have
profound effects on the retention and standing stock of wrack
(see Section III.1).

The proximity of beaches to donor ecosystems, and the
form and condition of those systems, can strongly influence
the supply of wrack to sandy shores. For example, in northern
California, USA, the deposition of macrophytes on beaches
varies depending on the source of wrack: subtidal reefs, rocky
intertidal shores and estuaries (Liebowitz et al., 2016). More-
over, beaches within 0.5–1 km of donor ecosystems were
most strongly influenced by wrack from those sources, while
the role of more distant (7 km) kelp beds was only detectable
during storm events (Liebowitz et al., 2016). Similarly,
Reimer et al. (2018) showed that proximity of sources, ocean
upwelling, estuarine outwelling, beach geomorphology and
wave climate contributed to patterns of wrack on beaches
in the US Pacific. Finally, wrack supply to beaches is influ-
enced by the changing state of the donor systems. For exam-
ple, excessive grazing by urchins can shift kelp forests to
urchin barrens (Ling et al., 2009), reducing the availability
of wrack material over timescales of years to tens of years
and spatial scales up to tens of kilometres (Fig. 5).

(4) Links between wrack and fauna in beach
ecosystems

(a) Invertebrates

Sandy-beach ecosystems have traditionally been viewed as
‘harsh’ environments, characterised by low diversity and
low abundance of intertidal invertebrates (Brown &
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Fig. 5. Coastal, oceanographic and atmospheric factors that influence wrack supply and retention on sandy beaches, and the spatial
and temporal scales at which they operate. Sources of information are provided in Table 2. Supply = processes that influence the
input of wrack to beach ecosystems; retention = processes that influence the ability of wrack to remain in beach ecosystems. The
colour of the ellipse for each factor indicates whether the factor affects either supply or retention, or both supply and retention of
wrack in beach systems. Beach management refers to management practices such as beach grooming and armouring that
influence supply and retention of wrack, while overgrazing refers to impacts on donor systems such as kelp forests due to grazing
pressure.
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McLachlan, 1990). This historical view, however, largely
ignores the pivotal role of wrack and carrion for the sandy
beach fauna as well as the associated biodiversity and pro-
ductivity. The effect of wrack on overall intertidal biodiver-
sity can be substantial, with wrack-associated macrofauna
(macroinvertebrates, >1 mm) making up, on average,
>45% of the species present on beaches that receive inputs
of giant kelp in California, USA (Dugan et al., 2003). In fact,
intertidal species richness on Californian beaches is strongly
correlated with kelp wrack abundance but not with beach
morphodynamics (e.g. Dugan et al., 2003; Schooler
et al., 2017). Wrack supports invertebrate biodiversity
(Fig. 1A) by providing a food source for populations of spe-
cialized intertidal invertebrates and a refuge from predation
and environmentally stressful conditions, such as desicca-
tion (Dugan et al., 2003; Crawley & Hyndes, 2007; Colom-
bini et al., 2009). Interestingly, it has also been shown that
wrack availability can modify the balance of biological
interactions (Duarte et al., 2010a). However, in some cases,
extensive wrack deposits can negatively impact some inver-
tebrates through physical disturbance or anoxia, including
meiofauna, (invertebrates <1 mm; McGwynne, McLa-
chlan & Furstenburg, 1988) and macrofauna (e.g. wedge
clam Donax serra; Soares, Schlacher & McLachlan, 1997),
but few studies have examined these disturbance processes.
Relatively few studies have examined meiofauna, yet they
can be abundant in wrack (McGwynne et al., 1988; Alke-
made & van Rijswijk, 1993; Jȩdrzejczak, 2002a;
Urban-Malinga et al., 2008) and appear to play a crucial role
in the decomposition of detrital material (see Section II.5.a).

Wrack contains specialized mobile intertidal macrofauna,
highlighted by the greater species richness and density of
macrofauna on beaches with wrack compared with those
with little or no wrack both in south-western Australia (Ince

et al., 2007) and the west coast of the USA (Dugan
et al., 2003). Similarly, the removal of wrack on beaches in
USA, Brazil and Spain significantly reduced the diversity
and density of these specialized arthropods (Dugan
et al., 2003; Schooler et al., 2017, 2019; Vieira et al., 2016).
By contrast, the experimental addition of wrack to the upper
parts of beaches resulted in higher arthropod abundances,
particularly amphipods, and increased abundances of several
beetle species in southern Australia (Schlacher et al., 2017).
Correlation analyses of invertebrate abundance versus wrack
biomass data extracted from the literature showed that
beach-cast macrophytes positively influence invertebrate
species richness and abundance (N = 15, Fig. 6). The diverse
suite of invertebrates that use wrack comprises three main
trophic guilds: (1) ‘detritivores’ that feed directly on the detri-
tal macrophytes; (2) bacterivores that feed mainly on wrack-
associated bacteria; and (3) ‘predators’ and ‘scavengers’
feeding on live prey or animal carcasses of the detritivores
and bacterivores.
Detritivores, represented almost exclusively by arthro-

pods, form the most common and diverse trophic guild of
macrofauna associated with beach-cast wrack. Amphipods
dominate this guild (Fig. 6), but other groups such as isopods
and several beetle species (Tenebrionidae, Histeriidae and
Curculionidae) are also common detritivores on stranded
wrack in many areas (Griffiths & Stenton-Dozey, 1981;
Dugan et al., 2003; Jaramillo et al., 2006). Amphipods are
almost ubiquitous in wrack deposits at temperate latitudes
and are typically the most abundant taxon in fresh wrack
deposits around the globe (Fig. 7). Amphipods in beach-cast
wrack mainly belong to the family Talitridae, including the
genera Talitrus, Megalorchestia, and Orchestoidea. Importantly,
although highly mobile and building a new burrow every
day (Emery et al., 2022), amphipods and several other beach

Fig. 6. The numbers and proportions of papers with a focus on different aspects of total invertebrate assemblages (A) and amphipod
populations (B) in wrack on beaches and in surf zones, and the relationship between amphipod abundance and wrack biomass (g wet
mass m−2) (C) based on data extracted from the literature. In (A) and (B), circle quarters represent summaries of correlations of wrack
biomass with invertebrate assemblages and amphipod populations (i.e. abundance, biomass, species richness, diversity). In each
quadrant, the number of studies is displayed in parentheses, and the percentage of studies reporting a significant effect for each
variable is illustrated by the coloured region in each quadrant (e.g. 83% of invertebrate studies reported positive effects on
invertebrate abundance). In C, correlations are based on generalised additive models (GAMs) that assess the relationship between
amphipod abundance and wrack biomass, with GAMS limited to four knots. See Table S2 for data sources.
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crustaceans brood their young, possess no planktonic life
stages, and have limited dispersal as adults. This combination
of traits makes these populations dependent on local repro-
duction and survival (Dugan et al., 2005; Hubbard
et al., 2014). Generalised additive models of amphipod abun-
dance versus wrack biomass data extracted from the literature
show that wrack biomass strongly influences the abundance
and biomass of amphipods, revealing a unimodal response
where peak abundance of amphipods occurs at moderate
levels of wrack biomass, but decreases at very high levels of
wrack biomass (Fig. 6). At very high levels of wrack standing
stock, the reduced abundance of amphipods likely reflects
compaction, anoxia, and other unfavourable environmental
conditions created by large amounts of decomposing organic
matter (e.g. McGwynne et al., 1988). Combining their high
consumer densities, which can reach 10,000–100,000 indi-
viduals per m beach (e.g. Lastra et al., 2008; Lowman
et al., 2019), and their high feeding rates on wrack (see
Section II.5.a), amphipods play a crucial role in linking wrack
subsidies from donor ecosystems to higher trophic levels in
sandy-beach ecosystems (see Section II.6).

Dipteran flies form one of the most abundant bacterivore
groups in wrack deposits and are almost ubiquitous in wrack
across the globe (Fig. 7). Even though diets show considerable
variation between dipteran families, bacteria are likely the
most common food source for Diptera in the beach-cast

wrack, as shown for Coelopa frigida (Cullen, Young &
Day, 1987). Seaweed or kelp flies, belonging to several fami-
lies within Sciomyzoidae, are the most common dipteran
group in wrack (e.g. Egglishaw, 1960; Dobson, 1974b), but
taxa such as Fucellia spp. (Anthomyiidae), Ephydridae, and
Sphaeroceridae are also common in wrack and are typically
important bacterivores (Cole, 1969; Griffiths & Stenton-
Dozey, 1981). The larvae of these flies feed on kelp, fungi
and bacteria (Cullen et al., 1987), forming an important bac-
terivore compartment in the food web of beach-cast wrack.
Similar to amphipods, the abundance of kelp and seaweed
flies is also strongly correlated with wrack biomass on beaches
in California (Dugan et al., 2003). However, several much
smaller fly species from several families are often overlooked
in standard surveys (Cole, 1969) and would be worthy of
future investigation.

Themain groups ofmacrofauna feeding on detritivores and
bacterivores in beach-cast wrack deposits are beetles (particu-
larly Staphylinidae, Carabidae and Histeriidae) and spiders
(Moore & Legner, 1976; Griffiths & Griffiths, 1983; Mell-
brand et al., 2011). Wrack-associated beetles include some
flightless species that complete their entire life cycle in the
intertidal zones of beaches. For example, the staphylinid spe-
ciesThinopinus pictus andHadrotes crassus in North America have
a specialised diet, feeding throughout their life cycle on amphi-
pods (Orchestoidea) in beach intertidal zones (Craig, 1970;
Richards, 1982), while another staphylinid genus (Aleochara
spp.) parasitise seaweed fly larvae (Yamazaki, 2012). In gen-
eral, only a few invertebrate species have been reported to pre-
date on amphipods, with a wider range preying on the
abundant dipteran larvae (Yamazaki, 2012). However, many
species, such as most spiders, have a fairly broad diet
(Verschut et al., 2019).

Since wrack deposition on beaches is generally highly
dynamic over time, macrofauna utilising this resource need
high intertidal mobility, temporary burrows and rapid devel-
opment to make the best use of an essentially ephemeral
resource (Dugan, Hubbard & Quigley, 2013; Emery
et al., 2022). Mobility is also critical to avoid being washed
out to sea with the wrack during high tides, but some species
are also reported to have very low alongshore mobility
(Schooler et al., 2017). Not surprisingly, stranded macroalgal
deposits are often colonized by mobile macrofauna (particu-
larly amphipods and dipterans) within a few hours of deposi-
tion, followed by predatory staphylinid beetles (Pelletier
et al., 2011; Yanenik, 1980). Studies from the UK suggest that
the life cycle of kelp flies (Coelopa sp.) is completed within
1 month, depending on temperature (Dobson, 1974b). Rapid
larval development is supported by the elevated tempera-
tures within the masses of stranded wrack, particularly in
larger, deeper wrack beds, where the temperature may be
>10 �C above ambient levels (Crafford & Scholtz, 1987),
and moisture levels are maintained (Kompfner, 1974), but
not in smaller clumps where the temperature is more similar
to air temperature (Dobson, 1974b). Development coordi-
nated with wrack deposition has also been suggested for some
Coelopa spp., where larvae develop in spring high-tide

Fig. 7. Abundance rank of the main invertebrate taxa found on
the beach and in the surf zone based on extracted data from the
literature from across the globe. Dots indicate the normalised
ranks (i.e. taxa in order of abundance, e.g. 1, 2, 3, etc.,
converted to values between 0 and 1, where 1 indicates the
most abundant) of taxa in individual studies, while the vertical
lines denote the mean rank and horizontal lines the 95%
confidence intervals. Sample sizes (number of studies) are
provided in parentheses. See Table S3 for data sources.
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deposits of wrack and emerge from pupae by the next spring
tide (Kompfner, 1974). Development times for different kelp
fly species may be linked to tidal elevation, with species at
lower elevations developing faster (Kompfner, 1974). The
initial burst in colonisation of freshly stranded wrack by
selected macrofauna is followed by a succession of other spe-
cies (Yanenik, 1980; Colombini et al., 2009), and a gradual
increase in meiofauna such as nematodes, oligochaetes and
mites (Jedrzejczak, 2002b), followed by coleopteran species
(Griffiths & Stenton-Dozey, 1981; Colombini et al., 2000).

In addition to quantity, the composition of the wrack input
can influence invertebrate assemblages, but this effect seems
to vary among consumer species (Mews, Zimmer &
Jelinski, 2006; Olabarria et al., 2010). For example, in
south-western Australia, densities of invertebrates were
greater in experimental plots of stranded seagrass compared
with Sargassum wrack on the beach (Mellbrand et al., 2011),
while the amphipod Allorchestes compressa showed a preference
for macroalgae over seagrass in the surf zone (Crawley &
Hyndes, 2007). Similarly, in southern California, amphipods
(Megalorchestia spp.) preferred experimental wrack patches
comprising kelp rather than seagrass, and differentMegalorch-

estia species varied in their colonisation rates in wrack
patches, perhaps to avoid competition with congeners
(Michaud et al., 2019). The causes of these different affinities
are likely to be complex when the macrophytes making up
wrack vary in species, age, decomposition levels, and in terms
of physical structure, nutrient content, palatability and bacte-
rial community (Lowman et al., 2021) (see Section II.5.a).

(b) Fishes

Wrack in the surf zones of ocean beaches provides important
feeding, sheltering, and nursery habitats for a diversity of
fishes (Fig. 1A; Crawley et al., 2006; McLachlan &

Defeo, 2017; Ortodossi et al., 2019). Drifting macrophytes
are widely reported to influence the abundance, diversity,
and species composition of surf fishes (e.g. Robertson &
Lenanton, 1984; van der Merwe & McLachlan, 1987;
Andrades et al., 2014), but the ecological functions of wrack
as a fish habitat remain poorly understood, largely because
few studies (N = 20) have examined how macrophyte accu-
mulations affect fish populations, assemblages, or food webs
(Olds et al., 2018). Studies that examine the links between
wrack and surf fishes come mainly from Australia (N = 12),
limiting their broader generality and highlighting the need
to gain a more global understanding of the role of drifting
macrophytes for fish in surf zones. Nevertheless, the biomass
of drifting macrophytes in surf zones can shape the composi-
tion of fish assemblages, modify patterns in fish diversity,
abundance, and biomass, and alter the structure of coastal
food webs (Crawley et al., 2006; Clark, Bennett &
Lamberth, 1996b; Baring, Fairweather & Lester, 2014;
Vargas-Fonseca et al., 2016). Our analyses showed that fish
abundance (N = 15 studies) and biomass (N = 2 studies) are
mostly positively correlated with standing stock of wrack,
whereas fish diversity is greatest at moderate levels of wrack
biomass (N = 9 studies) (Fig. 8).
Most research on the role of surf-zone wrack has focused on

fish assemblages, whereas data on individual taxa are sparse
(Clark, Bennett & Lamberth, 1996a; Lacerda, Barletta &
Dantas, 2014; Baring, Lester & Fairweather, 2016). Numer-
ous fish species have been reported to prey on epifaunal
amphipods that accompany drifting macrophytes (Crawley
et al., 2006; Baring, Lester & Fairweather, 2018b). A greater
biomass of drift macrophytes has been reported to have posi-
tive effects on the abundance of several fish species
(Robertson & Lenanton, 1984; Andrades et al., 2014; Baring,
Lester & Fairweather, 2019). Generalised additive models of
fish diversity versus surf-zone wrack biomass extracted from

Fig. 8. Proportions of papers with a focus on different aspects of fish assemblages in the wrack in surf zones (A), and the relationship
between fish abundance (B) and diversity (C) with wrack volume (litres per 100 m2) based on data extracted from the literature. In (A),
circle quarters represent summaries of correlations with fish assemblages (i.e. abundance, biomass, species richness, diet). In each
quadrant, the number of studies is displayed in parentheses, and percentage of studies reporting a significant effect for each
variable is illustrated by the coloured region in each quadrant (e.g. 67% of studies on surf fish assemblages report positive effects of
wrack biomass on fish abundance). In (B) and (C), correlations are based on generalised additive models (GAMs) assessing the
relationship between fish abundance and diversity against wrack volume with GAMs limited to four knots. See Table S4 for data
sources.
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the literature showed that, at least at low to moderate levels of
wrack biomass there is a positive effect on fish diversity in surf
zones by providing enhanced feeding opportunities (N = 9)
(Fig. 8C). However, some species show either a neutral
(Robertson & Lenanton, 1984) or negative (Crawley
et al., 2006) diversity response to increasing wrack biomass in
surf zones, presumably due to high densities of wrack imped-
ing the movement and foraging of fish with particular mor-
phological and feeding traits. Variation in the type of drifting
macrophytes can also affect fish abundance, which is likely to
reflect primarily the different affinities of their prey to different
macrophytes as habitat and food. For example, the amphipod
A. compressa displays a strong preference for brown algae as
food and habitat (Crawley & Hyndes, 2007) and forms the
main diet of juvenile fish with strong affinities to drifting wrack
(Crawley et al., 2006). The types of drifting macrophytes in surf
zones are therefore likely to influence the bottom-up control of
food webs in this ecosystem.

(c) Birds, mammals and reptiles

While highly mobile birds, mammals, and reptiles can use
various resources across the landscape, many species show
consistent associations with wrack or carrion as food
resources on sandy beaches. Birds are often the most abun-
dant vertebrates on sandy beaches, including shorebirds,
waders, gulls, and a wide variety of terrestrial birds (from vul-
tures to flycatchers) (Dugan et al., 2003). Many waders and
passerines feed on wrack-associated invertebrate prey
(Lopez-Uriarte et al., 1997; Dugan et al., 2003), while gulls,
raptors, ravens, crows and vultures feed on carrion
(Table 3). Wintering waders or shorebirds can reach high
abundances (>95 individuals km−1) on wrack-strewn open
coast beaches and their numbers can be strongly and posi-
tively correlated with the abundance of stranded wrack and
wrack-feeding invertebrates on those beaches (Tarr &
Tarr, 1987; Dugan et al., 2003; Hubbard & Dugan, 2003),
reflecting their use of wrack-associated invertebrates as prey
(Griffiths, Stenton-Dozey & Koop, 1983; Dugan et al., 2003;
Schlacher et al., 2017).Wrack is particularly important for plo-
vers, which are visual surface feeders; this group includes
IUCN red-listed species in many parts of the world (e.g. the
Western snowy plover Charadrius nivosus nivosus on the California
coast; Dugan et al., 2003).

Amongst mammals, many terrestrial species occasionally
forage on living macrophytes or invertebrates in the lower
intertidal zone during low tides (Carlton & Hodder, 2003).
Populations of the coyote Canis latrans (Rose & Polis, 1998)
and foxes (Cypher et al., 2014; Bingham et al., 2018; Schla-
cher et al., 2020) have been linked directly to the use of either
marine-derived carrion or wrack-associated invertebrates as
food sources (Table 3). Deer species have been observed for-
aging directly on beach-cast macroalgae (Conradt, 2000).
The side-blotched lizard (Uta stansburiana) consumes marine
algae (Barrett et al., 2005), and the brown tree lizard (Anolis
sagrei) is strongly attracted to wrack (Spiller et al., 2010).

Far less is known about the use of wrack by birds, marine
mammals and reptiles in the surf zone, although many spe-
cies [e.g. ducks (Neff, Page & Boehm, 2011); otters and sea
lions (Somers, 2000; Osterrieder, Salgado Kent &
Robinson, 2017); sea turtles, penguins and sea lions
(Tershy, Breese & Croll, 1997; Witherington, Hirama &
Mosier, 2011; Colombelli-Négrel, 2019)] occur regularly in
the waters adjacent to beaches. Some birds, such as geese
and swans (Percival & Evans, 1997; Choney et al., 2014),
are known to feed on subtidal or intertidal seagrass in
meadows along the shoreline of sheltered coastal systems.
However, there is a paucity of studies linking birds, mam-
mals, and reptiles to surf-zone wrack as a food source or hab-
itat, except for the cormorant Phalacrocorax varius which has
been observed actively foraging for fish in surf-zone wrack
in Australia (Robertson & Lenanton, 1984). Clearly, there
is a need to gain knowledge on the surf zone to understand
the overall influence of wrack on higher-order consumers.

(5) Biological processing and fate of wrack

(a) Decomposition and consumption processes

Wrack on sandy beaches represents a rich source of organicmat-
ter. The principal mechanisms breaking down this organic mat-
ter pool on sandy beaches aremicrobial decomposition, physical
processing and consumption by intertidal meiofauna and
macrofauna (Fig. 9A; Jȩdrzejczak, 2002b; Lomstein et al., 2006;
Lastra et al., 2008; Lastra, L�opez & Neves, 2015; Rodil
et al., 2015c). All thesemechanisms play a key role in determining
wrack residence time on the beach (e.g. Mateo, 2010).

Stranded macrophytes on beaches may have undergone
decomposition for hours to days before stranding (e.g.Griffiths&
Stenton-Dozey, 1981; Colombini et al., 2000; Jaramillo
et al., 2006). Once stranded, bacterial concentrations increase
dramatically (Koop, Newell & Lucas, 1982a; Cullen
et al., 1987; Urban-Malinga & Burska, 2009). For example, bac-
terial biomass increased 12-fold on kelp (Ecklonia maxima)
stranded for 8 days (Koop et al., 1982a). The microbial commu-
nities associatedwithwrack likely develop from the biofilm of the
macrophytes transported onto beaches rather than from the
microbial community in the surrounding water (Singh
et al., 2021). Macroalgae and seagrasses are covered in diverse
microbial communities that include bacteria, microalgae,
fungi, and protists, and are highly specific and distinct from
the seawater microbiome (Wahl et al., 2012; Tarquinio
et al., 2019). For example, Bacteriodetes and Proteobacteria
are dominant phyla in the biofilm of macroalgae and sea-
grasses (Wahl et al., 2012; Tarquinio et al., 2019). Bacteriodetes
may comprise up to 25–50% of the biofilm (Berdan
et al., 2021), whereas this phylum makes up only a small
portion of the seawater microbiome (Sunagawa et al., 2015).
Bacterial assemblages vary somewhat among species of algae
in wrack (Rodil, Fernandes & Mucha, 2015a), similar to
variation in biofilms across living macroalgae species
(e.g. Staufenberger et al., 2008; Trias et al., 2012). Further-
more, the microbiome is likely to shift during the
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decomposition process, as occurs on kelp detritus on the sea-
floor (Brunet et al., 2021). The analysis of these microbial com-
munities is still in its infancy, and there is a clear knowledge
gap about microbial communities and their role in wrack
and the broader sandy-beach ecosystem.

As part of the decomposition process, heterotrophic bacte-
ria digest macrophytes, converting organic carbon and

nitrogen into simpler forms of dissolved organic and inor-
ganic nutrients, which are released into the water column
or incorporated into bacterial biomass (Säwström
et al., 2016) and flow into higher trophic levels in wrack accu-
mulations (Fig. 9A). The rates of decomposition can be influ-
enced by chemical and morphological traits of the
macrophytes forming the wrack (Duggins & Eckman, 1997;

Table 3. Examples of scavengers and the carrion they consume on ocean-exposed sandy beaches reported in the literature.

Scavenger(s) Carrion type Location Reference

Invertebrates
Whelks (Bullia rhodostoma, B.
digitalis)

Jellyfish South Africa Brown (1961, 1971)

Gastropod (Reticunassa festiva) Fish Hong Kong Morton & Yuen (2000)
Isopods (cirolanids) Various drift organisms USA (California) Dugan et al. (2003); Quilter (1987)
Polychaetes Various drift organisms USA (California) Dugan et al. (2003)
Beetles Various drift organisms USA (California) Dugan et al. (2003)
Ghost crabs (Ocypode spp.) Diverse/mixed carrion multiple countries and

locations
Wolcott (1978); Lucrezi & Schlacher
(2014); Rae et al. (2019)

Reptiles
Lace monitor (Varanus varius) Fish Australia (East Coast) Schlacher et al. (2013a,b); Bingham et al.

(2018)
Cottonmouth snake (Agkistrodon
piscivorus conanti)

Fish USA (Florida, Gulf Coast
Islands)

Lillywhite et al. (2008)

Birds
Corvidae (crows and ravens) Fish Australia (East & South

Coast)
Huijbers et al. (2013, 2015, 2016);
Schlacher et al. (2013a,b); Brown et al.
(2015); Bingham et al. (2018)

Gulls (several spp.) Fish Australia (East & South
Coast)

Huijbers et al. (2013, 2015, 2016);
Schlacher et al. (2013a,b); Bingham
et al. (2018); Brown et al. (2015)

White-bellied sea eagle
(Haliaeetus leucogaster)

Various mammals, other
birds, fish, and crabs

Australia (various coastal
areas)

Smith (1985); Huijbers et al. (2013, 2015,
2016); Schlacher et al. (2013a,b);
Brown et al. (2015); Bingham et al.
(2018)

Whistling kite (Haliastur
sphenurus)

Various terrestrial and marine
animals (rodents, reptiles,
fish)

Australia (woodland and
coastal areas)

Gosper (1983); Huijbers et al. (2013,
2015, 2016); Schlacher et al. (2013a,b);
Brown et al. (2015); Bingham et al.
(2018)

Brahminy kite (Haliastur indus) marine carrion such as fish
and crabs

Australia (various coastal
areas)

Smith et al. (1978); Lutter et al. (2006);
Huijbers et al. (2013, 2015, 2016);
Schlacher et al. (2013a,b); Brown et al.
(2015); Bingham et al. (2018)

Mammals
Coyote (Canis latrans) Seals, birds, sea turtles, fish,

marine arthropods
CA, USA Rose & Polis (1998)

Lion (Panthera leo) Cape fur seal carcasses Namibia (Skeleton Coast) Bridgeford (1985)
Tasmanian devil (Sarcophilus
harrisii)

Fish Australia (Tasmania) Moore (2002); T.A. Schlacher, personal
observations

Brown hyena (Parahyaena
brunnea)

Cape fur seal carcasses Namibia (Skeleton Coast) Skinner et al. (1995); Kuhn et al. (2008)

Black-backed jackal (Canus
mesomelas)

Mammals (seal pups), birds,
and fish

Namibia (Skeleton Coast) Oosthuizen et al. (1997); Avery et al.
(1987)

Dingo (Canis lupus dingo) Broad range of stranded
material including dugong
and whale carcasses

Australia (East Coast,
Fraser Island)

Moore (2002); Behrendorff et al. (2016,
2018b)

Red fox (Vulpes vulpes) Fish Australia (East & South) Huijbers et al. (2013, 2015, 2016); Brown
et al. (2015); Bingham et al. (2018)

Dogs and cats (feral and
domestic)

Fish Australia (East & South) Huijbers et al. (2013)
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Bucholc et al., 2014). For example, the kelpsM. pyrifera, Saccor-
hiza polyschides and Undaria pinnatifida are morphologically sim-
ple algae with soft, long, strap-like blades that stack in layers
on the sand (Lastra et al., 2008; Rodil et al., 2019). These algae
can decompose rapidly through the joint action of microbes
and detritivores (Rodil et al., 2019). By contrast, Sargassum muti-

cum and Cystoseira baccata are morphologically more complex,
with tough thalli bearing secondary and tertiary branches,

and decompose much more slowly (e.g. Olabarria
et al., 2010). The structural molecules in seagrasses, which
are vascular marine plants, are refractory and slow to break
down (Trevathan-Tackett et al., 2017). These reduce both
decomposition and consumption rates (see below) and allow
large banquettes of seagrass to accumulate in some regions,
such as the Mediterranean Sea (e.g. Mateo, S�anchez-Lizaso &
Romero, 2003) (see Figs 2C and 4).

Fig. 9. Conceptual diagram of: (A) decomposition and nutrient cycling; (B) the grazer/detritivore food web; and (C) scavenging
pathways as key processes for the fate of stranded organic material in beach ecosystems. Diagrams created using IAN Image
Library (http://ian.umces.edu).
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Macroinvertebrate detritivores can rapidly process large
quantities of wrack in sandy-beach ecosystems. This can
result in fragmentation which can enhance decomposition
of wrack (Jȩdrzejczak, 2002b; but see Catenazzi &
Donnelly, 2007a) and drive the food web (see Section II.4.
b). Talitrid amphipods can eat >50% of macroalgal wrack
standing stock, thus playing a pivotal role in wrack turnover
(Colombini et al., 2000; Lastra et al., 2008). Feeding prefer-
ences due to differences in palatability influence consump-
tion rates in wrack accumulations (e.g. Michaud
et al., 2019). Based on a range of studies examining feeding
preferences, kelp and other species of brown algae are gener-
ally the preferred food source for talitrid amphipods, whereas
seagrass species (e.g. Phyllospadix) and green algae (e.g. Ulva
spp.) are generally the least preferred (see Tables 4 and 5).
Similarly, analyses of published consumption data indicate
that consumption rates by amphipods are greater for kelp,
particularly Durvillaea and Egregia, than other macroalgae

and seagrasses (Fig. 10). Differences in preference and con-
sumption rates can vary among regions and life stages of
wrack detritivores. For example, Duarte, Jaramillo & Con-
treras (2008) and Duarte et al. (2010b) showed that adults of
the amphipod Orchestoidea tuberculata preferred D. antarctica

over the algae M. pyrifera and L. nigrescens, whereas juveniles
preferred L. nigrescens (Duarte et al., 2010b). Interestingly,
the stark contrast in consumption rates between Durvillaea

and Macrocystis reported from Chile (Duarte et al., 2010b)
was not found for Bellorchestia quoyana in New Zealand, where
both kelp species were consumed at similar rates (Su�arez-
Jiménez et al., 2017a). These differences may reflect varying
feeding preferences among amphipod species or differences
in the nutritional quality of food sources between regions,
making it difficult to generalise regarding consumption and
resultant turnover rates of beach wrack, at least within brown
algae (Emery et al., 2021; Lowman et al., 2021). However, the
far lower consumption rates of seagrass (Crawley &

Table 4. Ranking of different wrack components in terms of preference, growth and survival rates of amphipods and ghost crabs.
Food sources that a consumer species preferred equally are given the same rank, where 1 is the highest/most preferred rank and 4
the lowest/least preferred.

Variable Taxa Consumer species

Food source

Reference
Kelp

Other
brown
algae

Red
algae

Green
algae

Seagrass Other Carrion

Food preference Amphipod Allorchestes compressa 1 1 2 2 4 Crawley & Hyndes (2007)
Amphipod Allorchestes compressa 1 2 3 3 3 Robertson & Lucas (1983)
Amphipod Bellorchestia quoyana 1 2 Su�arez-Jiménez et al. (2017a)
Amphipod Megalorchestia corniculata 1 2 Lastra et al. (2008)
Ghost crab Ocypode convexa 2 2 2+ 1 Rae et al. (2019)

Growth Amphipod Allorchestes compressa 1 3 4 2* Robertson & Lucas (1983)
Amphipod Megalorchestia corniculata 1 2 Lastra et al. (2008)

Survival Amphipod Allorchestes compressa 1 3 4 2* Robertson & Lucas (1983)
Amphipod Notorchestia sp. 1 2 3 Poore & Gallagher (2013)

+Dune vegetation.
*Fine particles.

Table 5. Median percentage contribution of different types of food sources to the diets of consumers in wrack based on mixing model
outputs of stable isotopes for consumers and potential food sources extracted from the literature.

Taxon Consumer species

Food source (%)

Region Reference
Brown algae

Red
algae

Green
algae

Seagrass
Dune
plants

POM Carrion

Beach
Amphipod Talitrus saltator 16 — 5 — 32 29 16 Atlantic (East) Bessa et al. (2014)
Amphipod Talorchestia brito 31 — 12 — 17 22 19 Atlantic (East) Bessa et al. (2014)
Amphipod Tylos europaeus 22 — 18 — 13 31 13 Atlantic (East) Bessa et al. (2014)
Amphipod Allorchestes compressa 5 12 — 25 21 — — Eastern Indian Ocean Ince et al. (2007)
Amphipod Talorchestia capensis 8 9 8 — — 9 — Southern Arica Porri et al. (2011)
Ghost crab Ocypode convexa 17 9 — 9 15 — 10 Eastern Indian Ocean Rae et al. (2019)

Surf zone
Amphipod Allorchestes compressa 32 14 — 54 — — — Eastern Indian Ocean Crawley et al. (2009)

POM, fine particulate organic matter in sediment or water column.
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Hyndes, 2007; Michaud et al., 2019) indicate that this type of
wrack has much lower dietary benefits despite its high bio-
mass in wrack in sandy-beach systems in many
regions (Fig. 4).

The nutritional quality of wrack obviously plays a critical
role in determining feeding choices in macroinvertebrate det-
ritivores on beaches (Lastra et al., 2008; Duarte et al., 2010b,
2011, 2014; Lowman et al., 2021), similar to mesograzers
(macrofauna grazing on living macrophytes) in subtidal eco-
systems (Duffy & Hay, 1991). The protein content of algae is
considered a key trait in determining their nutritional quality
as food sources (Cruz-Rivera & Hay, 2000), similar to the case
for plant consumers in other systems (White, 1993), and
appears selectively to influence feeding by detritivores on
sandy beaches (e.g. Duarte et al., 2011, 2014). Physical struc-
ture (shape and toughness) and the presence of chemical
defences (secondary metabolites) have also been shown to
influence food selection in these taxa (e.g. Pennings
et al., 2000; Cruz-Rivera & Hay, 2003; Duarte et al., 2011).
As expected, growth rates and survival of detritivores are
strongly linked to food preferences and nutritional quality
(Table 4). For example, Lastra et al. (2008) showed that the
preferred macroalgae species sustained the highest growth
rates in M. corniculata, and this pattern also was observed for
other amphipods (Duarte et al., 2010b, 2011).

Nutritional quality and palatability are affected by envi-
ronmental factors and decomposition. Moisture and solar
radiation influence the nutritional quality and palatability
of wrack (Lastra et al., 2015; Rodil et al., 2015c). Even small
changes in ambient ultraviolet (UV) radiation may modify
the structural and nutritional status of wrack (Rodil
et al., 2015c), while ocean acidification induces changes in
algal palatability and protein concentration of macrophytes
(Benítez et al., 2016; Duarte et al., 2016). However, the age
of the detritus (related to the level of decomposition) and

algal structure seem more important for food choice by det-
ritivores in these systems (Pennings et al., 2000; Duarte
et al., 2010b, 2011, 2014). Decomposition affects the nutri-
tional quality (Rothäusler et al., 2005; Rothäusler &
Thiel, 2006) and palatability of macrophytes for consumers,
but the interactions between detritus, microbes, and detriti-
vores make it difficult to disentangle the interactive effects
of microbes and detritivores in the decomposition process.

In terrestrial systems, microbes are known to improve the
quality and appeal of detritus as a food source (Zimmer &
Topp, 1997), but they can also be consumed directly by det-
ritivores (Thompson, Abreu & Cavalli, 1999). For sandy bea-
ches, we know that nematodes and many dipteran larvae
feed directly on bacteria (Porri, Hill & McQuaid, 2011;
Urban-Malinga & Burska, 2009; Cullen et al., 1987). Thus,
their role is likely to be similar to that seen in saltmarsh sys-
tems, where meiofauna influence the decomposition of salt-
marsh detritus and fluxes of nutrients via their influence on
detritus-associated microbes (e.g. Alkemade, Wielemaker &
Hemminga, 1992; Lillebø et al., 1999), although their influ-
ence on decomposition can vary across taxa (De Mesel
et al., 2003). Bacteria provide a more nutritious food source
than the macrophytes themselves, as they have a lower C:N
ratio (Fukuda et al., 1998), and higher levels of lipids and
polyunsaturated fatty acids (de Carvalho &
Caramujo, 2012). Indeed, growth and reproductive rates
for the amphipod A. compressa were shown to be enhanced
when bacteria were abundant on the kelp Ecklonia radiata

(Singh et al., 2021). Clearly, a more comprehensive under-
standing of these interactive effects is required.

(b) Nutrient fluxes and chemical transformation

Sandy beaches have long been considered ‘biogeochemical
hotspots’, ‘reactors’, or ‘digestors’, reflecting their high levels

Fig. 10. Mean+ SE consumption rates by amphipods feeding on different sources of wrack in beach and surf zone habitats. WW, wet
mass. Data extracted from Duarte et al. (2008, 2010b) (Chile), Lastra et al. (2008) (Spain), Gomes Veloso et al. (2012) (Brazil),
MacMillan & Quij�on (2012) (Canada), Poore & Gallagher (2013) (Australia), Michaud et al. (2019) (USA) and Su�arez-Jiménez
et al. (2017a) (New Zealand).
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of nutrient fluxes and transformations (e.g. Pearse, Humm &
Wharton, 1942). Wrack accumulations represent peak hot-
spots for biogeochemical processes as indicated by high met-
abolic rates that release high levels of CO2 (Coupland,
Duarte & Walker, 2007; G�omez et al., 2018). Indeed, CO2

production by wrack accumulations on beaches can surpass
the most active soils on Earth (G�omez et al., 2018). Similarly,
wrack on beaches can be three times more metabolically
active than subtidal seagrass or macroalgal beds
(e.g. Coupland et al., 2007; Lastra, L�opez & Rodil, 2018;
Liu et al., 2019). By contrast, methane emissions from wrack
appear to be negligible, at least under dry conditions (Liu
et al., 2019), despite wrack having a demonstrated potential
for biogas production (Kaspersen et al., 2016; Misson
et al., 2020).

During consumption and decomposition of wrack in
sandy-beach systems, complex biomolecules are transformed
to simpler organic forms and mineralised to inorganic nutri-
ents (e.g. NH4, NO3 and PO4) (Coupland et al., 2007; Dugan
et al., 2011; Lowman et al., 2019). As in other systems, hetero-
trophic bacteria likely play a major role in this conversion,
but little work has been carried out in sandy-beach systems.
Rodil et al. (2019) is one of a few studies demonstrating a
strong positive relationship between bacterial diversity and
dissolved inorganic nitrogen in wrack deposits.

Since nitrogen is often the limiting nutrient in coastal
marine ecosystems (Howarth & Marino, 2006), much of the
focus of nutrient processes in beach ecosystems has been on
N cycling, including standing stocks and fluxes (Mateo, 2010;
Goodridge & Melack, 2014). Nitrogen produced during
mineralisation of wrack can enter several pathways: (1) incor-
poration into the food web, primarily via uptake by surf-zone
phytoplankton and possibly by benthic microalgae; (2) flushing
back to the sea; (3) loss to the atmosphere via denitrification;
(4) incorporation into dune vegetation; and/or (5) immobilisa-
tion in recalcitrant pools after burial in the long-term sedimen-
tary sink (Fig. 9A) (McLachlan & McGwynne, 1986;
McLachlan & Romer, 1990). Nitrogen fixation in bare sands,
decaying wrack, or surf zones is probably a negligible compo-
nent of the N cycle of these systems, while denitrification rates
on exposed beaches are low and restricted to the few top cen-
timetres of the sand (McLachlan & Romer, 1990). Denitrifica-
tion only accounted for 2% of the N supplied by kelp or 5–
10% of the overall N inputs to the beach (McLachlan &
McGwynne, 1986). Both nitrification (oxidation of ammonia
to nitrate to nitrite) and denitrification (reduction of nitrate
to nitrogen gas) are processes mainly associated with the
groundwater, likely reflecting N inputs from the land rather
than from the wrack itself (e.g. Santoro, Boehm &
Francis, 2006).

While the role of sandy beaches in the processing of
organic matter and nutrient cycling has been repeatedly
demonstrated, the question of whether beaches function as
sources or sinks of nutrients remains largely unanswered,
and there are differences among nutrient species and loca-
tions (e.g. Cockcroft & McLachlan, 1993; Goodridge &
Melack, 2014; Prasad et al., 2019). Supporting the ‘sink’

hypothesis, buried beach-cast kelp (Fucus spp.) has been
shown to enhance the growth of pioneer dune vegetation in
the Netherlands (van Egmond et al., 2019). The seagrass Posi-
donia oceanica provides an important nutrient source for adja-
cent dune vegetation in the Mediterranean Sea (Cardona &
García, 2008; Jiménez et al., 2017), where wrack is domi-
nated by seagrass (Fig. 4). However, supporting the ‘source’
hypothesis, field studies show that kelp decaying on the beach
can rapidly leach high concentrations of dissolved nutrients
[dissolved inorganic nitrogen (DIN), dissolved organic nitro-
gen (DON), dissolved organic carbon (DOC), total dissolved
nitrogen (TDN) and total dissolved phosphorus (TDP); see
Fig. 9A] for plant uptake and export (Koop & Lucas, 1983;
McGwynne et al., 1988; Dugan et al., 2011). The concept of
wrack-covered beaches functioning as nutrient sources is sup-
ported by the correlation between wrack biomass and DIN
concentration in surf-zone water reported in California
(Dugan et al., 2011) and by the increased productivity of local
or invasive macroalgal species and phytoplankton blooms in
waters adjacent to shorelines with increased wrack biomass
load (Cockcroft & McLachlan, 1993). The dominance of a
source or sink role may vary over time – leaching is likely to
be greater in late summer and autumn when TDN fluxes
from the beach are greater (Dugan et al., 2011), or during
beach erosion episodes that release stored N in intertidal
porewater to the ocean.
Our capacity to reject either hypothesis is limited by the

lack of comprehensive studies examining nutrient dynamics
in sandy-beach ecosystems characterised by wrack input,
and their ability to return nutrients to adjacent coastal eco-
systems. For example, the outflow of DON may contribute
to production in adjacent coastal systems as decomposing
kelp is known to leach large amounts of DON (Hyndes,
Lavery & Doropoulos, 2012). Exported DON is likely to be
remineralised by highly abundant heterotrophic bacteria in
the biofilm of living macrophytes (Egan et al., 2013; Tarqui-
nio et al., 2019) in adjacent ecosystems (e.g. kelp forests or sea-
grass beds) and provide DIN to their hosts (e.g. Tarquinio
et al., 2018). In addition, nutrient budgets need to consider
all sources of nutrients, including groundwater. In some
regions, the discharge of groundwater derived from further
inland can contribute 50–99% of the total submarine
groundwater discharge (Urish & McKenna, 2004; Li
et al., 2011) and supply nutrients to beach ecosystems
(Santoro et al., 2006; Loveless & Oldham, 2010).

(c) Scavenging

Carrion forms a highly nutritious and widespread food
resource that is exploited by a rich diversity of scavengers
(Table 3; Wilson & Wolkovich, 2011). Like detrital macro-
phytes, carrion supply is often highly variable in time and
space, and is likely to be a nutritionally and energetically
important resource in many beach food webs. There is gen-
erally no physical barrier to prevent animal carcasses from
becoming stranded on beaches, or for scavengers to reach
those carcasses, making them an easily accessible food source
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for consumers on ocean-exposed shores (Schlacher et al.,
2013a). Scavengers can be categorised into two functional
groups: (1) facultative scavengers, which feed on live prey as
predators and on dead animals as scavengers (e.g. foxes, birds
of prey), and (2) obligate scavengers that rely exclusively on
carrion as their sole source of nutrition (e.g. vultures;
Ruxton, 2004). It is, however, increasingly recognised that
most predators will readily scavenge, and many marine car-
nivores will also consume dead animal matter (Britton &
Morton, 1994).

A wide variety of scavenging species is found on sandy
beaches worldwide, encompassing both invertebrates
(e.g. whelks, isopods, polychaetes, beetles, ghost crabs, dip-
terans, etc.), and vertebrates (e.g. reptiles, raptors, and car-
nivorous mammals) (Table 3). Some of the best-studied
invertebrate scavengers on sandy beaches are gastropods,
particularly the genus Bullia in South Africa (Brown, 1961),
which rapidly detect and consume a wide range of carrion
(Brown & McLachlan, 1990). Crustaceans (e.g. isopods,
amphipods, decapods) contain many taxa that consume car-
rion (Brown & McLachlan, 1990). For example, Tylos latrielle
shifts its diet ontogenetically, with juveniles preferring car-
rion, whereas adults prefer seaweed (Kensley, 1974; Brown &
McLachlan, 1990). Hippid crabs (Hippa spp.) are important
scavengers on tropical island beaches, catching and consum-
ing Portuguese man of war jellyfish (Physalia physalis) washed
onto the beach (e.g. Wenner, Ricard & Dugan, 1987; Lastra
et al., 2016). Ghost crabs (Ocypode spp.) are the largest inverte-
brates on many sandy beaches, occupying a range of trophic
levels formed by a diverse diet that regularly includes dead
animal flesh (Lucrezi & Schlacher, 2014). In fact, when given
a choice, ghost crabs strongly prefer carrion over algae and
plants (Rae, Hyndes & Schlacher, 2019). The strandline
of beaches also harbours a rich fauna of insect carrion
feeders, including a high diversity of Coleoptera (Rozen,
Engelmoer & Smiseth, 2008; Irmler, 2012). However,
despite insects being considered to be important scavengers
of animal carcasses in other terrestrial systems (Redondo-
G�omez et al., 2022), little is known about their role as scaven-
gers on sandy beaches (Blandford et al., 2019).

Reptiles, birds and mammals are functionally important
scavengers in many ecosystems, and their role in sandy-beach
ecosystems is becoming more apparent. In Australia, lace
monitors (Varanus spp.) are widespread consumers of birds,
fish, mammals, amphibians, eggs, and insects, and carrion
can at times dominate their diet (Guarino, 2001). Indeed,
lace monitors regularly consume fish carcasses (Schlacher
et al., 2013b; Bingham et al., 2018). Similarly, in the USA, cot-
tonmouth snakes (Agkistrodon piscivorus conanti) traverse areas of
vegetation at the beach’s edge and feed on fish that have been
discarded, or regurgitated, by colonial waterbirds
(Lillywhite, Sheehy III & Zaidan III, 2008). Also, birds such
as raptors can dominate carrion consumption in landscapes
not strongly altered by urbanisation, followed by corvids
and gulls (e.g. Huijbers et al., 2016). Similarly, many mam-
mals are attracted to, and feed on, stranded dead animals
on sandy beaches, including hyenas (Parahyaena brunnea),

black-backed jackals (Canus mesomelas), coyotes, dingos, foxes
(Vulpes vulpes), feral pigs, and even lions (Table 3). Strandings
of cetaceans and dead seals are prominent examples of car-
rion providing intermittent bounties for carnivores
(Behrendorff, Belonje & Allen, 2018a).

(6) Connectivity with adjacent ecosystems

The transfer of drift macrophytes and carrion from the sea to
the beach can provide a significant energy subsidy to beach
ecosystems. Such ‘spatial subsidies’ across highly permeable
ecosystem boundaries increase secondary productivity and
biodiversity in systems that contain otherwise low in situ pri-
mary productivity. In the preceding sections, we have
highlighted that seagrasses, and particularly brown algae
(mainly kelp), provide the main vectors for this subsidy (sensu
Hyndes et al., 2014) by supporting food webs as well as creat-
ing habitats for a diversity of microbes, invertebrates, fish,
birds, reptiles and mammals in beach ecosystems (Fig. 9B,
C). Biological and physical processes can recycle this
imported material through consumption, fragmentation
and decomposition, releasing dissolved nutrients back into
the water or transferring nutrients through the food web
and ultimately exporting those nutrients into other coastal
ecosystems on land or in the sea (Fig. 9B,C). However, as dis-
cussed in Section II.5.b, the role of these systems as a source
or sink of nutrients is equivocal, and the spatial extent and
magnitude of any export of nutrients into other ecosystems
is generally not well quantified for most settings.

Wrack deposits on the beach are often concentrated close
to the waterline but regularly extend higher on the shore
through the action of high tides, storm surges, and wind-
driven transport. Further inland transport of wrack- or
carrion-derived material depends on its direct or indirect
consumption or transport by more mobile animals and their
subsequent inland movement. For instance, Mellbrand et al.
(2011) showed that seaweed flies feeding on wrack, and pred-
ators such as spiders feeding on detritivores in wrack, may
move marine carbon many metres inland. However, this
movement was not detectable beyond the primary dune,
most likely due to the dilution of marine-derived material
as other land-based food sources become more available, or
the limited movement of those invertebrates feeding directly
or indirectly on marine-derived material, or a combination
of both.

Larger and more mobile consumers are likely to provide a
greater role as vectors for the inland transport of marine-
derived material. Since invertebrates associated with beach-
cast wrack provide an important food source for a variety
of birds, such as plovers, swallows, and flycatchers
(e.g. Dugan et al., 2003; Schlacher et al., 2017), it logically fol-
lows that this marine-derived material may enhance the
breeding success and productivity of these birds. Such
bottom-up control of populations is also likely for other
mobile animals that assimilate nutrients from invertebrates
associated with beach-cast wrack, such as lizards (Barrett
et al., 2005; Spiller et al., 2010), rodents, foxes, and bears
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(Ricci et al., 1998; Stapp & Polis, 2003; Fox et al., 2014;
Davidson et al., 2021; Page et al., 2021) as well as feral pigs
(M.A. Mateo & J.E. Dugan, personal observations). Also,
deer can forage directly on wrack (Conradt, 2000), while
domestic livestock, such as pigs, sheep and cattle, can be com-
mon on beaches in some regions (J.E. Dugan, C. Duarte &
M.A. Mateo, personal observations), where they may graze
on wrack. However, this mechanism has not been tested,
and the magnitude of the subsidy for these mobile consumers
will depend on: (1) the proportion of their food derived from
the wrack; (2) the inland extent of their movement; (3) the
extent to which they contribute to higher trophic levels; and
(4) the release of nutrients in inland areas through their faeces
or carcasses.

The consumption of carrion by scavengers on sandy bea-
ches illustrates a broader functional role concerning the trans-
fer of nutrients and organic matter across ecosystem
boundaries, linking foodwebs at the landscape scale and creat-
ingmeta-population dynamics in the consumers. Themobility
of birds makes them pivotal vectors for transferring nutrients
and energy across ecotones, including consumption and trans-
fer of carrion-derived matter across surf–beach–dune land-
scapes (Fig. 9C; Whelan, Wenny & Marquis, 2008). Flying
enables birds to search over large areas and detect patchy
resources (i.e. carcases) in ways generally not possible for other
consumers. The spatial extent of other mobile scavengers,
such as rodents and foxes, is also likely to be substantial. One
of the most seminal contributions to understanding the pivotal
role of carrion subsidies on sandy shores comes from Rose &
Polis (1998). They showed that coyote populations were 2–
14 times higher on the coast compared to upland areas. In
their study system, food supply that included carcasses washed
ashore was greater on the coast.

Wrack stranded high on the shore may also influence both
vegetation and the landscape structure of this dynamic zone.
For example, seasonal pulses of wrack, primarily Sargassum,
deposited by storms have been shown to enhance foliage
growth of native shrubs and trees (Spiller et al., 2010). Such
wrack deposits may provide nutrients, propagules and a
favourable microhabitat for terrestrial plants, particularly
the salt-tolerant pioneering species typical of coastal strand
and foredune habitats (Dugan & Hubbard, 2010). The prop-
agules of many dune plants can be transported and delivered
with wrack and other drift material (e.g. Hesp, 2002). Similar
to pioneering dune plant species, wrack deposits can act as
ecosystem engineers that influence the geomorphology of
shorelines by trapping wind-blown sand to form hummocks
and embryo dunes, at least in the short term (Nordstrom,
Jackson & Koroty, 2011a). These features can then buffer
beaches and dunes from erosion during storms.

The return of wrack-derived nutrients back into coastal
waters is likely to occur through two main processes. Firstly,
the breakdown and decomposition of wrack release large
quantities of dissolved nutrients (e.g. Dugan et al., 2011)
and fine particulates (Soares et al., 1997) that provide vectors
for the return of nutrients back to the sea. However, the spa-
tial extent of this return of nutrients is largely unquantified. It

is likely that dissolved nutrients are rapidly diluted, but they
may be utilised by intertidal and shallow subtidal primary
producers, such as surf-grasses and kelps (Dugan
et al., 2011). However, it does appear that organic matter
derived from detrital kelp along the beaches of
South Africa supports populations of the subtidal filter-
feeding bivalve Donax serra (Soares et al., 1997). Furthermore,
while some studies have concluded that fine particulate kelp
supports filter and suspension feeders in other coastal systems
(e.g. Stuart, Field & Newell, 1982; Duggins, Simenstad &
Estes, 1989), the evidence is equivocal (Miller &
Page, 2012; Yorke et al., 2013). Thus, the supply rate of par-
ticulate kelp from beaches may be important for suspension
feeders in coasts across the globe, a predictive hypothesis that
requires testing. Secondly, surf-zone wrack can provide an
important feeding and sheltering habitat for fish, particularly
for juveniles. For example, some fish feed almost exclusively
on wrack-associated amphipods in the surf zones of south-
western Australia (Crawley et al., 2006). Through the ontoge-
netic movement of those juveniles towards their more
offshore spawning grounds, they form vectors for the return
of wrack-derived nutrients into other marine ecosystems
across coastal seascapes. However, the spatial extent and
magnitude of this mechanism remain unknown. The degree
to which the return of nutrients from wrack on the beach
and in the surf-zone to adjacent coastal systems, regardless
of the vector, occurs is likely to differ according to: (1) differ-
ent types and periodicities of subsidies (e.g. kelp, seagrass,
carrion) supplied to sandy-beach ecosystems; (2) the resi-
dence time and dominant processes (e.g. decomposition,
grazing, transport) acting on the wrack in those systems;
(3) the type of vectors (e.g. fish, bird, reptile, mammal, inver-
tebrate); (4) physical processes (e.g. tide and storm surges)
that erode beaches and export nutrients and wrack; and
(5) the seascape and landscape contexts.

III. HUMAN USE, IMPACTS AND MANAGEMENT

(1) Beach grooming and harvesting

Once stranded on beaches, humans can impact wrack deposits
by grooming and harvesting (Fig. 1B). Beach grooming inten-
tionally removes macrophyte wrack, litter and other debris
from beaches, usually through raking and sieving the sand
using specialised heavy equipment often on beaches in popu-
lated or urban areas (Fig. 2G,H; Dugan et al., 2003; Fanini,
Cantarino & Scapini, 2005; Dugan & Hubbard, 2010).
Grooming can be intensive and frequent (daily to weekly). It
can have substantial adverse environmental effects, impacting
the habitat quality, biodiversity, geomorphology, and func-
tioning of beach ecosystems. Physical disturbance caused by
grooming stymies dune formation and plant colonisation
(Dugan &Hubbard, 2010). It also reduces the species richness,
abundance, and biomass of wrack-associated fauna, such as
amphipods, isopods, beetles and flies (Dugan et al., 2003;
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Gilburn, 2012; Schooler et al., 2019). In southern California,
impacts of widespread grooming have contributed to local
and regional losses of populations of vulnerable wrack-
dependent taxa, such as isopod species occurring only on bea-
ches (Hubbard et al., 2014). Althoughmeiofaunal communities
can recover quickly (within 24 h) from a single, short-term
grooming event (Gheskiere et al., 2006), the consequences of
repeated, regular beach cleaning may be significant for these
intertidal communities. These direct impacts are likely to
extend through the food web and to affect mobile predators,
such as shorebirds that rely on wrack-associated prey as food.
Also, since wrack can supply nutrients to the adjacent sea (see
Section II.5.b), its removal from beaches may impact the
donor and other neighbouring marine ecosystems by depriv-
ing them of a substantial part of their recycled production
(e.g. Mateo et al., 2003).

The practice of beach grooming or raking is widespread
globally and is often a component of well-established man-
agement regimes for beaches used for tourism and recreation
(Davenport & Davenport, 2006). For example, around 45%
(>150 km) of sandy beaches are groomed at least seasonally
in densely populated southern California, USA (Dugan
et al., 2003), while >106,000 m3 of Posidonia wrack are esti-
mated to be removed in 1 year from 44 beaches on the island
of Sardinia (de Falco, Simeone & Baroli, 2008). Beach rating
systems and ‘ecolabels’ often contain criteria that encourage
wrack removal (Zielinski, Botero & Yanes, 2019). The Blue
Flag Program is the largest of these ecolabels and includes
over 4000 beaches in 47 countries (Boevers, 2008). Klein &
Dodds (2018) note that this program emphasises tourism pro-
motion over environmental protection and conservation of
beach ecosystems. Indeed, many beaches rated under the
Blue Flag scheme are very likely to have management
regimes that remove wrack, thereby causing environmental
harm (Mir-Gual et al., 2015; Gilburn, 2012). Thus, the con-
cept of ‘cleaning’ the beach ignores the ecological and con-
servation value of wrack for the beach ecosystems and
broader seascapes/landscapes.

Macroalgal wrack is regularly harvested in some regions of
the world, including Chile, North America, Ireland and
Australia (Kirkman & Kendrick, 1997; Holden et al., 2018a).
Native macroalgal species are harvested for various uses,
including production of alginate and agar, cattle feed, soil fer-
tilizers and conditioners, and feed for abalone hatcheries; sea-
grasses are harvested for insulation and soil fertilizer
(Kirkman & Kendrick, 1997). Methods and equipment used
in harvesting macrophytes from beaches vary from artisanal
hand picking (a few tonnes y−1) to commercial harvesting
using heavy equipment, such as bulldozers (hundreds to thou-
sands of tonnes y−1, Holden et al., 2018a). Harvesting can
remove large proportions of beach wrack. For example, har-
vests of drift bull kelp (D. potatorum) on Australia’s King Island
(average harvests of 2500 tonnes year−1; Holden et al., 2018a)
account for approximately 50% of the kelp deposited annually
on those beaches (Kirkman & Kendrick, 1997). Non-native
species may also be harvested. For example, quotas of 900–
1500 tonnes year−1 for the invasive red alga (Mazzaella japonica)

accounts for <16% of the available biomass along a shoreline
section of Canada’s Vancouver Island (Holden et al., 2018a).
Overall, the harvest methods and their associated impacts,
and the relative magnitude of wrack harvest are not well docu-
mented (see Kirkman &Kendrick, 1997; Holden et al., 2018a),
suggesting this is a significant gap in the information needed to
manage wrack harvest on sandy beaches. A report on impacts
of wrack harvest in Ireland recommended using non-
mechanical harvest methods, prohibiting removal of sediment
or substrate and minimising disturbance to surrounding envi-
ronments by commercial wrack harvest (McLaughlin et al.,
2006 cited in Holden et al., 2018a).

(2) Shoreline armouring and coastal development

Many shorelines, including those formed by sandy beaches,
have been profoundly altered through the construction of
coastal armouring structures and extensive shoreline devel-
opment (Charlier, Chaineux & Morcos, 2005) (Fig. 1B).
Coastal development (e.g. ports, marinas, resorts) can cover,
or remove sandy beaches, thereby profoundly impacting the
habitat value and function of beach ecosystems (see Dugan
et al., 2012; Hubbard et al., 2014; Jaramillo et al., 2021).
Shoreline armouring, such as seawalls and revetments, is a
common practice around the world to protect coastal devel-
opment and infrastructure from erosion and coastal hazards
(Airoldi et al., 2005; Dugan et al., 2012), and has received the
most attention with regard to environmental impacts (Dugan
et al., 2008, 2012, 2018). Seawalls have been shown to reduce
the overall width of sandy beaches, with the most significant
impacts in the upper part of the intertidal zone (Dugan
et al., 2008; Jaramillo et al., 2021). The resulting losses in
the upper beach zone, suitable for the retention of wrack, dis-
rupt the trophic subsidy provided by donor ecosystems and
significantly reduce the diversity and abundance of wrack-
associated invertebrates (e.g. Dugan & Hubbard, 2006;
Dugan et al., 2008; Jaramillo, Dugan & Hubbard, 2012;
Jaramillo et al., 2021; Dethier et al., 2016). Importantly, these
impacts extend up the food web, where armouring can signif-
icantly reduce the use of beaches by shorebirds and seabirds
(Dugan & Hubbard, 2006; Dugan et al., 2008). Similar
impacts may also extend to surf zone fishes, but more
research is needed to evaluate this. Other forms of armour-
ing, such as groynes and detached breakwaters, may increase
or decrease the standing stock of wrack on beaches and in
surf zones, depending on the scale, orientation and design
of those structures (e.g. Airoldi et al., 2005; Dugan
et al., 2012; Martin et al., 2005).

Although small-scale beach-restoration efforts suggest that
biodiversity and ecosystem functions of beaches can be
restored through the removal of armouring structures (Lee
et al., 2018), increased armouring of shorelines is the expected
global trend as coastal hazards increase with climate change.
As sea level rises, the effects of coastal squeeze exerted by
existing armouring structures on beaches are also expected
to increase as structures interact more frequently with waves
and tides (Dugan et al., 2018). Robust evaluations of the
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ecosystem services provided by intact dune–beach–surf-zone
systems, and the protocols for quantifying the often dynamic
indicators of those services, are generally not available for
proposed armouring projects (King et al., 2018). As a result,
other than recreation and storm buffering, values of the eco-
logical functions and services of beaches are rarely applied to
assess the impacts of these projects. New approaches to eval-
uating beaches as ecosystems, based on restoration or
replacement costs, are urgently needed for mitigating the
impacts of shoreline armouring, especially as pressures from
sea level rise and coastal squeeze intensify (e.g. King
et al., 2018).

(3) Invasive species

Numerous species of non-native algae have been introduced
to coastal waters, either via human activities (e.g. shipping) or
as a result of species range shifts due to ocean warming
(Hurd et al., 2014). For example, the green alga Codium fragile

and the kelp Undaria pinnatifida, both originally from the north
Pacific Ocean, now have near-global distributions (Hurd
et al., 2014). The ecological impacts of invasive species on sub-
tidal habitats are equivocal [Su�arez-Jiménez et al. (2017b) and
references therein], but we know far less about the impacts of
these invasive species as beach-cast wrack (see Quijon,
Tummon & Duarte, 2017) even though they can be com-
monly cast ashore (e.g. Piriz, Eyras & Rostagno, 2003; Rodil
et al., 2008). Certainly, the composition, quality and perhaps
the biomass, of the beach-cast material could be affected by
the displacement of native reef algae with invasive species,
thereby altering wrack inputs and food value. However, this
effect will depend on the life-cycle patterns and buoyancy of
the invasive species, which alter the ability of algae to be trans-
ported to the beach and the timing of the detrital input. For
example, U. pinnatifida is now a major component of subtidal
reefs in New Zealand, but contributes little to beach wrack,
which likely reflects its lack of buoyant structures
(e.g. pneumatocysts or buoyant blades) which are present in
the native M. pyrifera and D. antarctica that are common in
beach wrack in the region (Su�arez-Jiménez et al., 2017a). How-
ever, the invasive brown alga Sargassum horneri is an annual spe-
cies that can outcompete native kelp species and can seasonally
dominate the wrack deposited on some Californian beaches
(Marks, Reed & Holbrook, 2020). Beach-cast of its congener
S. muticum appears either to alter or to have no effect on inver-
tebrate composition and densities compared to native macro-
algal species (Rodil et al., 2008; Cacabelos et al., 2010). While
S. muticum appears to contribute to the food web on some bea-
ches (Olabarria et al., 2009), the magnitude of an invasive spe-
cies’ influence on beach food webs will depend on the ability of
native consumers to utilise the new resource and its nutritional
quality and palatability. For example, while the invasive
U. pinnatifida has similar nutrient characteristics to native spe-
cies in New Zealand, the consumption of this invasive species
by the amphipodB. quoyana appears to be hindered by its phys-
ical properties such as toughness (Su�arez-Jiménez et al., 2017b).
With few studies focusing on the impacts of invasive species on

the food webs and ecosystem structure of beach systems, it is
presently not possible to make generalisations regarding this
potential impact.

(4) Climate change impacts to recipient and donor
ecosystems

Arguably, the greatest threat to sandy-beach ecosystems is
the effect of climate change, especially via sea-level rise, more
intense and frequent storms, and ocean warming (Fig. 1C).
Sea-level rise and storm frequency are projected to intensify
beach loss, through increased erosion rates, inundation,
and coastal squeeze (Vitousek et al., 2017). These processes
will significantly impact beach ecosystems and their function-
ing, including the loss of habitat available for wrack deposi-
tion and retention and the survival of associated biota (see
Schlacher et al., 2008; Myers et al., 2019). The impacts of
sea-level rise on beaches are projected to manifest earliest
in the upper zones of beaches where wrack deposits support
biodiversity and coastal food webs (Dugan et al., 2012,
2013). These vulnerable zones have already been widely
impacted by coastal armouring and development, sediment
starvation, and beach management practices (Dugan
et al., 2008, 2013; Myers et al., 2019). A case study of several
Californian beaches projected that a 0.5 m increase in sea
level would result in a 75% loss of the upper beach zone
where wrack accumulates and is processed, eliminating
around 50% of intertidal biodiversity and numerous vital
ecosystem functions (Myers et al., 2019). Furthermore, recent
ENSO events that cause a combination of warming, storms
and sea-level rise (i.e. are a proxy for climate change), com-
bined with a multi-year drought, have caused historically
high levels of beach erosion and loss, with beaches retreating
beyond previous extremes along the southern portion of the
north-eastern Pacific coast (Barnard et al., 2017). While
beach nourishment may be seen as a mitigation measure
against this impact (de Schipper et al., 2021), burial of wrack
and carrion, and changes to the deposition dynamics of the
shoreline are likely to impact ecological processes in sandy-
beach ecosystems.
Ocean warming and related marine heatwave events will

also strongly affect key donor ecosystems that supply organic
material in the form of drift macrophytes to beaches and surf
zones (Fig. 1C). Important donor ecosystems, such as kelp
forests, are already being affected by ocean warming world-
wide (Wernberg et al., 2019). Heatwave events have led to
local extinctions of the kelp E. radiata (Wernberg
et al., 2016) and severe reductions in the biomass of seagrass
meadows (Arias-Ortiz et al., 2018) along the west coast of
Australia. Climate change and other human impacts have
already led to declines in seagrasses and kelp, with declines
of 7 and 2% year−1 in recent years, respectively (Waycott
et al., 2009; Krumhansl et al., 2016). Furthermore, increasing
sea temperatures have either led to, or are predicted to,
extend the ranges of tropical macrophytes and consumers
into higher latitudes (temperate regions) (Vergés et al., 2014;
Hyndes et al., 2016). Ultimately, these climate-driven effects
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will limit the supply, or alter the form, of macrophytes and
alter the ecosystem functioning of sandy-beach ecosystems
in those regions. For example, ocean warming is projected
to reduce the body size and fecundity of intertidal biota such
as talitrid amphipods that are key consumers of wrack
(Jaramillo et al., 2017), which is likely to alter the rates of
wrack processing by detritivores on beaches. Another global
impact, ocean acidification, is predicted to alter the nutri-
tional quality of algae, possibly translating to altered trophic
dynamics of consumers processing this wrack material
(Benítez et al., 2016; Duarte et al., 2016).

To understand these processes, we need studies conducted
at larger spatial and temporal scales, involving the dynamics
of wrack inputs and connectivity of beaches to source ecosys-
tems, presumably using data from remote sensing and other
synoptic resources. For example, wrack on tropical beaches
have essentially been ignored, yet they are experiencing
increased deposition of Sargassum (Maurer, de Neef &
Stapleton, 2015; Schell, Goodwin & Siuda, 2015), and other
macroalgal inputs as coral reefs transition to turf macroalgae
(Sura et al., 2019). Quantifying the biomass and composition
of wrack will play a critical role in determining the shifts in
supply over these timescales, and particularly in relation to
the impact of the shifting state of donor systems due to cli-
mate change and invasive species.

IV. FUTURE DIRECTIONS

Some of the priority research directions emerging from our
review include, but are not limited to, five broad themes:

(1) Quantifying the rates of processing of wrack inputs by
the entire suite of organisms from microbes to higher
order consumers and how their interactions influence
wrack persistence and turnover rates.

(2) Developing comprehensive nutrient budgets in beach
ecosystems, including the export of nutrients to inland
and other coastal systems, which will ultimately
develop a predictive understanding of the magnitude
of the role of wrack in seascape connectivity.

(3) Quantifying the rates of input and turnover of animal
carcasses over a broad range of species and regions
that encompass the diversity of vertebrate carni-
vores/scavengers.

(4) Examining the role of microbes andmeiofauna in driv-
ing secondary production and food webs in the beach
ecosystem.

(5) Determining the magnitude of flows, and their spatial
footprint, for nutrients originating fromwrack and car-
rion through coastal food webs over a range of differ-
ent seascape settings, including the movement of
predators (e.g. fish, birds, mammals) and scavengers
(e.g. birds, mammals) ultimately linked to marine
energy stranded on sandy beaches.

(6) Evaluating the effects of human impacts, including cli-
mate change and ocean acidification, through shifts in
the quantity and quality of wrack inputs affecting eco-
system functioning of sandy beach systems.

V. CONCLUSIONS

(1) Sandy beaches are iconic features of our coastlines, glob-
ally prized for providing valuable ecosystem services such as
coastal protection, support of wildlife, fisheries, unique biodi-
versity, and the creation of tourism and recreation opportu-
nities (Barbier et al., 2011). We show that large quantities of
detrital macrophytes can flow into and be processed in this
shoreline ecotone worldwide, albeit highly variable in
amount and composition. Supply and retention of wrack
are influenced by the oceanographic processes that transport
it, the geomorphology, orientation and landscape context of
beaches, and the condition, life history and morphological
characteristics of species that produce the wrack in the
marine donor ecosystems.
(2) Wrack deposits on beaches often create hotspots of micro-
bial metabolism, secondary productivity, biodiversity and
nutrient remineralisation. Decomposing wrack produces dis-
solved organic and inorganic nutrients that can return to
coastal waters. However, the magnitude and spatial extent
of the return of nutrients to other coastal ecosystems is largely
unknown. Furthermore, there is a clear need to understand
the role of microbes in driving secondary production and
biodiversity of macrofauna, and to a lesser extent meiofauna.
(3) Seagrass and kelp are typically the main components of
wrack. Many mobile invertebrates of the intertidal zone, par-
ticularly amphipods, prefer kelp as a food source, making
kelp the most energetically important carbon source in food
webs compared to seagrasses.
(4) The invertebrate consumers of wrack and associated
microbes, especially amphipods and dipterans, channel
energy up the food chain to predatory invertebrates (beetles),
fish, birds and occasionally mammals. Large andmobile con-
sumers can become vectors that transport wrack-derived
nutrients across habitat boundaries and more broadly across
coastal seascapes. The magnitude and spatial scale of such
transfers is currently not quantified.
(5) Increasing wrack biomass in surf zones increases fish
diversity and abundance, although diversity declines at very
high wrack biomass. Surf-zone wrack appears to play an
important nursery role for some fish species despite its tran-
sient nature, but it remains unclear how important this hab-
itat is compared to other potential nursery habitats, and their
relative importance to the spawning biomass of those species.
(6) The energetic role of beach-cast marine carrion in sandy-
beach ecosystems is likely widely underestimated, as it can be
removed very rapidly by highly mobile scavengers. These
scavengers are predicted to be pivotal biological vectors that
transfer marine productivity inland, thereby linking marine
and terrestrial ecosystems. However, we currently have very
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little data on the quantity of carrion on beaches, and the
magnitude, frequency, geographic distribution, and spatial
scales of these sea-land couplings performed by scavengers.
(7) Wrack is frequently removed to ‘improve’ the aesthetic
value of beaches used intensively for recreation. However,
beach grooming also removes the multiple ecological values
created by wrack (food, habitat, dune formation). Similarly,
shoreline structures such as seawalls impact the supply and
retention of wrack and its ecological value. The juxtaposition
of conserving wrack whilst clearing wrack or protecting
shorelines provides a major management challenge. Conse-
quently, conservation efforts should consider improving soci-
etal awareness on the ecological importance of stranded
organic matter, which is currently viewed in the same light
as anthropogenic debris (rubbish, litter).
(8) Rising ocean temperatures and sea levels due to climate
change will alter the supply, deposition and retention of wrack
and carrion in sandy-beach ecosystems and alter the proces-
sing of organicmaterial in these systems. Losses of donormate-
rial and the ability of beaches to retain material provide the
greatest and most widespread threat to the ecosystem func-
tions and services provided by subsidies of wrack and carrion
in sandy-beach ecosystems. This impact will be more pro-
nounced in temperate regions around the globe where kelp
subsidies are a prominent component of wrack. To under-
stand the potential level of this impact, we need more data
on the quantities and forms of detritus exported from donor
systems, the distances that these forms of detritus travel to
recipient systems, the retention and fate of detritus in those sys-
tems, and the likely loss of ecosystem functions related to
reduced detritus in sandy beaches and connected ecosystems.
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(2020). Spatio-temporal variation in macrofauna community structure in
Mediterranean seagrass wrack. Food Webs 25, e00178.

*Benı́tez, S., Duarte, C., L�opez, J., Manrı́quez, P. H., Navarro, J. M.,
Bonta, C. C., Torres, R. & Quij�on, P. A. (2016). Ontogenetic variability in the
feeding behavior of a marine amphipod in response to ocean acidification. Marine

Pollution Bulletin 112, 375–379.
*Bessa, F.,Baeta, A.&Marques, J. C. (2014). Niche segregation amongst sympatric

species at exposed sandy shores with contrasting wrack availabilities illustrated by
stable isotopic analysis. Ecological Indicators 36, 694–702.

Berdan, E., Roger, F., Kinnby, A., Cervin, G., Pereyra, R., Öpel, M.,
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Rothäusler, E., Macaya, E. C., Molis, M., Wahl, M. & Thiel, M. (2005).
Laboratory experiments examining inducible defense show variable responses of
temperate brown and red macroalgae. Revista Chilena de Historia Natural 78, 1–18.
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(2021). Kelp-associated microbes facilitate spatial subsidy in a detrital-based food
web in a shoreline ecosystem. Frontiers in Marine Science 8, 678222.

Skinner, J. D., van Aarde, R. J. & Goss, R. A. (1995). Space and resource use by
brown hyenas Hyaena brunnea in the Namib Desert. Journal of Zoology 237, 123–131.

Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P.,
Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A.,
Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-

Kirkpatrick, S. E., Scannell, H. A., ET AL. (2019). Marine heatwaves threaten
global biodiversity and the provision of ecosystem services. Nature Climate Change 9,
306–312.

Small, C. & Nicholls, R. J. (2003). A global analysis of human settlement in coastal
zones. Journal of Coastal Research 19, 584–599.

Smith, G. C. (1985). An analysis of prey remnants from Osprey Pandion haliaetus and
White-Bellied Sea-Eagle Haliaetus leucogaster feeding roosts. Emu—Austral Ornithology

85, 198–200.
Smith, L. A., Johnston, R. E. & Dell, J. (1978). ‘Part IV Birds’: the islands of the

north-west Kimberley, Western Australia. Wildlife Research Bulletin Western Australia

23, 67–82.
*Soares, A. G., McLachlan, A. & Schlacher, T. (1996). Disturbance effects of

stranded kelp on populations of the sandy beach bivalve Donax serra (Röding).
Journal of Experimental Marine Biology and Ecology 205, 165–186.

Soares, A. G., Schlacher, T. A. & McLachlan, A. (1997). Carbon and nitrogen
exchange between sandy beach clams (Donax serra) and kelp beds in the Benguela
coastal upwelling region. Marine Biology 127, 657–664.

*Sobocinski, K. L., Cordell, J. R. & Simenstad, C. A. (2010). Effects of shoreline
modifications on supratidal macroinvertebrate fauna on Puget Sound, Washington
beaches. Estuaries and Coasts 33, 699–711.

Somers, M. J. (2000). Seasonal variation in the diet of Cape clawless otters (Aonyx
copensis) in a marine habitat. African Zoology 35, 261–268.

*Spiller, D. A., Piovia-Scott, J., Wright, A. N., Yang, L. H., Takimoto, G.,
Schoener, T. W. & Iwata, T. (2010). Marine subsidies have multiple effects on
coastal food webs. Ecology 91, 1424–1434.

*Stapp, P. & Polis, G. A. (2003). Marine resources subsidize insular rodent
populations in the Gulf of California, Mexico. Oecologia 134, 496–504.

Staufenberger, T., Thiel, V., Wiese, J. & Imhoff, J. F. (2008). Phylogenetic
analysis of bacteria associated with Laminaria saccharina. FEMS Microbiology Ecology

64, 65–77.
*Stenton-Dozey, J. & Griffiths, C. L. (1980). Growth, consumption and

respiration by larvae of the kelp-fly Fucellia capensis (Diptera:Anthomyiidae).
South African Journal of Zoology 15, 280–283.

*Stenton-Dozey, J. M. E. & Griffiths, C. L. (1983). The fauna associated with
kelp stranded on a sandy beach. In Sandy Beaches as Ecosystems (eds A. MCLACHLAN

and T. ERASMUS), pp. 557–568. Springer Netherlands, Dordrecht.
*Stocking, K. A., Duignan, J. P., Roe, W. D., Meynier, L., Alley, M. &

Fettermann, T. (2009). Causes of mortality in stranded common dolphin
(Delphinus sp.) from New Zealand waters between 1998 and 2008. Pacific Conservation
Biology 15, 217–227.

*Strain, E. M. A., Heath, T., Steinberg, P. D. & Bishop, M. J. (2018). Eco-
engineering of modified shorelines recovers wrack subsidies. Ecological Engineering
112, 26–33.

Strydom, S., Murray, K., Wilson, S., Huntley, B., Rule, M., Heithaus, M.,
Bessey, C., Kendrick, G. A., Burkholder, D., Fraser, M. W. & Zdunic, K.

(2020). Too hot to handle: unprecedented seagrass death driven by marine
heatwave in a world heritage area. Global Change Biology 26, 3525–3538.

Stuart, V., Field, J. & Newell, R. (1982). Evidence for absorption of kelp detritus
by the ribbed mussel Aulacomya ater using a new 51Cr-labelled microsphere technique.
Marine Ecology Progress Series 9, 263–271.
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1. All publications identified in our search on vari-
ous aspects of wrack or carrion in sandy-beach ecosystems,
and their locations, habitats and research themes.
Table S2. References used to produce Fig. 6.
Table S3. References used to produce Fig. 7, including
details of the country (region), habitat sampled and type of
material in wrack (mixed = seagrass and macroalgae).
Table S4. References used to produce Fig. 8.
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