35 research outputs found

    Upper Mantle Oxygen Fugacity and Its Relationship to Metasomatism

    Get PDF
    We have calculated fO_2's and temperatures of various mantle environments worldwide using published analyses of coexisting olivine, orthopyroxene, clinopyroxene, and Fe^(3+)-bearing spinel from 280 peridotites. Most calculated fO_2's fall within ± 2 log units of the Fayalite-Magnetite-Quartz (FMQ) buffer at 15 kbar. Our data set defines a general trend in fO_2-T space that is not related to FMQ or to other Fe-bearing buffers. Variations in major-element, trace-element, and oxygen isotopic composition of xenoliths correlate with variations in calculated fO_2. Rare "fertile" xenoliths record fO_2's close to WM (Wüstite-Magnetite) buffer at 15 kbar and 900°C. Xenoliths with both cryptic and/or modal metasomatic overprinting are generally oxidized relative to xenoliths without evidence of such open system processing. Based on trace element and oxygen isotopic data, the best candidate for the metasomatic agent is a CO_2-H_2O-rich fluid. We suggest that metasomatic fluids are derived from oxidized, hydrated material subducted at convergent margins and that this process may have led to progressive oxidation of the earth's upper mantle through much of geologic time. This is consistent with the observation that xenoliths from Hawaii and Tahiti record fO_2's higher than mantle array's average, as do some xenoliths from the circumpacific region

    Бокс как вид спорта, дающий студентам преимущества в будущей профессии.

    Full text link
    Geodetic surveying is a core volcano monitoring technique. Measurements of how the crust deforms can give valuable insight into the mechanisms and processes that drive an eruption, and the way in which they change. Various geodetic observables, including ground deformation and gravity changes, have been recorded on Montserrat throughout the eruption. Instrumentation and surveying networks used to make such measurements have evolved significantly since 1995, providing increasingly accurate and robust observations. The detailed research that has been facilitated by these rich geodetic datasets has illuminated many aspects of the Soufrière Hills Volcano (SHV) and demonstrated eruptive mechanisms that are relevant to the study of other volcanoes. We have compiled a history of the geodetic study of the eruption on Montserrat, detailing the development of surveying techniques, network design and data processing since 1995. We then underline some of the key geodetic observations and review some of the most significant research that has contributed to our understanding of this volcanic system. Finally, we apply a series of typical deformation inversion models to deformation observations, and discuss the parameter sensitivity of such modelling approaches and how confidently they can be applied to identify the characteristics of the mechanisms feeding the eruption

    Severe paraneoplastic hypoglycemia in a patient with a gastrointestinal stromal tumor with an exon 9 mutation: a case report

    Get PDF
    BACKGROUND: Non-islet cell tumor induced hypoglycemia (NICTH) is a very rare phenomenon, but even more so in gastrointestinal stromal tumors. It tends to present in large or metastatic tumors, and can appear at any time in the progression of the disease. We present herein a case of NICTH in a GIST tumor and report an exon 9 mutation associated to it. CASE PRESENTATION: A thirty nine year-old man with a recurrent, metastatic gastrointestinal stromal tumor presented to the hospital with nausea, dizziness, loss of consciousness, and profound hypoglycemia (20 mg/dL). There was no evidence of factitious hypoglycemia. He was stabilized with a continuous glucose infusion and following selective vascular embolization, the patient underwent debulking of a multicentric 40 cm × 25 cm × 10 cm gastrointestinal stromal tumor. After resection, the patient became euglycemic and returned to his normal activities. Tumor analysis confirmed excessive production of insulin-like growth factor II m-RNA and the precursor protein, "big" insulin-like growth factor II. Mutational analysis also identified a rare, 6 bp tandem repeat insert (gcctat) at position 1530 in exon 9 of KIT. CONCLUSION: Optimal management of gastrointestinal stromal tumor-induced hypoglycemia requires a multidisciplinary approach, and surgical debulking is the treatment of choice to obtain immediate symptom relief. Imatinib or combinations of glucocorticoids and growth hormone are alternative palliative strategies for symptomatic hypoglycemia. In addition, mutations in exon 9 of the tyrosine kinase receptor KIT occur in 11–20% of GIST and are often associated with poor patient outcomes. The association of this KIT mutation with non-islet cell tumor induced hypoglycemia has yet to be established

    GPS Detection and Energy Estimation of the Ionospheric Wave caused by the July 13th, 2003 Explosion of the Soufriere Hills Volcano, Montserrat

    No full text
    Volcanic explosions or shallow earthquakes are known to trigger acoustic and gravity waves that propagate in the atmosphere at infrasonic speeds. At ionospheric heights, coupling between neutral particles and free electrons induces variations of electron density detectable with dual-frequency GPS measurements. Using GPS data collected in the Caribbean, we identified an ionospheric perturbation following a major volcanic explosion at the Soufriere Hills Volcano (Montserrat, Lesser Antilles) on July 13, 2003. Spectral analysis reveals peaks centered at 1 mHz and 4 mHz, similar to previous observations and consistent with theory, suggesting both gravity and acoustic wave components. We retrieve a horizontal velocity of ~24 m/s for the acoustic component, which, implies upward propagation at ~33°, consistent with ray tracing results. We model the acoustic wave using a N-wave pressure source at ground level combined with ray-tracing to propagate the neutral pressure wave; this accounts for the dispersive characteristics of the atmosphere while conserving total acoustic energy. Plasma velocity is derived from neutral velocity using a finite difference solution of the magneto-hydrodynamic momentum equation. The continuity equation for charge densities is used to compute corresponding electron density variations, which are then numerically integrated along satellite-to-receiver line-of-sights, simultaneously accounting for the satellite displacements. We minimize the misfit between observed and model waveforms to estimate a total acoustic energy release of 1.53 1010J for the primary explosion event at Soufriere Hills Volcano associated with the peak dome collapse. This method can be applied to any explosion of sufficient magnitude, provided GPS data are available at near to medium range from the source

    Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat

    No full text
    International audienceResonant coupling between the Earth and the atmosphere at frequencies where the solid Earthmodes overlap the fundamental modes of the atmosphere allows for the triggering of oscillatoryacoustic perturbations by ground excitation and vice versa. Here, we describe oscillatoryperturbations observed in the solid Earth (from volumetric borehole strainmeter data) and inthe atmosphere (from GPS-derived ionospheric total electron content) following the 2003 July13, Soufri`ere Hills Volcano explosion (Montserrat, Lesser Antilles). Spectral analysis showsan amplitude peak at 4 mHz for both data sets, with similar waveforms and signal duration.Using a normal mode summation technique, we show that both signals are explained by asingle explosive source in the atmosphere. Similarities in waveforms, in particular a doublewave train also reported after several other explosion-triggered atmospheric perturbations,result from the superposition of the dominant (fundamental) atmospheric modes that triggerresonant coupling with the solid Earth around 4 mHz

    Implications of magma transfer between multiple reservoirs on eruption cycling

    No full text
    Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers)

    Magma-sponge hypothesis and stratovolcanoes : case for a compressible reservoir and quasi-steady deep influx at Soufrière hills volcano, Montserrat

    No full text
    We use well-documented time histories of episodic GPS surface deformation and efflux of compressible magma to resolve apparent magma budget anomalies at Soufrière Hills volcano (SHV) on Montserrat, WI. We focus on data from 2003 to 2007, for an inflation succeeded by an episode of eruption-plus-deflation. We examine Mogi-type and vertical prolate ellipsoidal chamber geometries to accommodate both mineralogical constraints indicating a relatively shallow pre-eruption storage, and geodetic constraints inferring a deeper mean-pressure source. An exsolved phase involving several gas species greatly increases andesite magma compressibility to depths >10 km (i.e., for water content >4 wt%, crystallinity ∼40%), and this property supports the concept that much of the magma transferred into or out of the crustal reservoir could be accommodated by compression or decompression of stored reservoir magma (i.e., the “magma-sponge”). Our results suggest quasi-steady deep, mainly mafic magma influx of the order of 2 m3s−1, and we conclude that magma released in eruptive episodes is approximately balanced by cumulative deep influx during the eruptive episode and the preceding inflation. Our magma-sponge model predicts that between 2003 and 2007 there was no evident depletion of magma reservoir volume at SHV, which comprises tens of km3 with radial dimensions of order ∼1–2 km, in turn implying a long-lived eruption.Published versio
    corecore