48 research outputs found

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns

    No full text
    We present a sensitivity analysis of the tropospheric NO2 retrieval from the Ozone Monitoring Instrument (OMI) using measurements from the Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) and Intercontinental Chemical Transport Experiment-B (INTEX-B) campaigns held in 2006. These unique campaigns covered a wide range of pollution conditions and provided detailed information on the vertical distribution of NO2. During the DANDELIONS campaign, tropospheric NO2 profiles were measured with a lidar in a highly polluted region of the Netherlands. During the INTEX-B campaign, NO2 profiles were measured using laser-induced fluorescence onboard an aircraft in a range of meteorological and polluted conditions over the Gulf of Mexico and the east Pacific. We present a comparison of measured profiles with a priori profiles used in the OMI tropospheric NO2 retrieval algorithm. We examine how improvements in surface albedo estimates improve the OMI NO2 retrieval. From these comparisons we find that the absolute average change in tropospheric columns retrieved with measured profiles and improved surface albedos is 23% with a standard deviation of 27% and no trend in the improved being larger or smaller than the original. We show that these changes occur in case studies related to pollution in the southeastern United States and pollution outflow in the Gulf of Mexico. We also examine the effects of using improved Mexico City terrain heights on the OMI NO2 product
    corecore