77 research outputs found

    Relevant Assay to Study the Adhesion of Plasmodium falciparum-Infected Erythrocytes to the Placental Epithelium

    Get PDF
    In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies

    Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus

    Get PDF
    Size-scaling metabolism is widely considered to be of significant importance in biology and ecology. Thus, allometric relationships between metabolic rate (VO2) and body mass (M), V O25aiMb, have long been a topic of interest and speculation. It has been proposed that intraspecifically metabolic rate scales isometrically or near isometrically with body mass during the early life history in fishes, invertebrates, birds and mammals. We developed a new perspective on intraspecific size-scaling metabolism through determination of metabolic rate in the Japanese flounder, Paralichthys olivaceus, during their early life stages spanning approximately four orders of magnitude in body mass. With the increase of body mass, the Japanese flounder had four distinct negative allometric phases in which three stepwise increases in scaling constants (ai, i51?4), i.e. ontogenetic phase shifts in metabolism, occurred with growth during its early life stages at around 0.002, 0.01 and 0.2 g, maintaining each scaling exponent constant in each phase (b50.831).These shifts in metabolism during the early life stages are similar to the tiger puffer, Takifugu rubripes. Our results indicate that ontogenetic phase shifts in metabolism are key to understanding intraspecific size-scaling metabolism in fishes

    Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study

    Get PDF
    Choroidal neovascularization (CNV) of the macular area of the retina is the major cause of severe vision loss in adults. In CNV, after choriocapillaries initially penetrate Bruch's membrane (BrM), invading vessels may regress or expand (CNV initiation). Next, during Early and Late CNV, the expanding vasculature usually spreads in one of three distinct patterns: in a layer between BrM and the retinal pigment epithelium (sub-RPE or Type 1 CNV), in a layer between the RPE and the photoreceptors (sub-retinal or Type 2 CNV) or in both loci simultaneously (combined pattern or Type 3 CNV). While most studies hypothesize that CNV primarily results from growth-factor effects or holes in BrM, our three-dimensional simulations of multi-cell model of the normal and pathological maculae recapitulate the three growth patterns, under the hypothesis that CNV results from combinations of impairment of: 1) RPE-RPE epithelial junctional adhesion, 2) Adhesion of the RPE basement membrane complex to BrM (RPE-BrM adhesion), and 3) Adhesion of the RPE to the photoreceptor outer segments (RPE-POS adhesion). Our key findings are that when an endothelial tip cell penetrates BrM: 1) RPE with normal epithelial junctions, basal attachment to BrM and apical attachment to POS resists CNV. 2) Small holes in BrM do not, by themselves, initiate CNV. 3) RPE with normal epithelial junctions and normal apical RPE-POS adhesion, but weak adhesion to BrM (e.g. due to lipid accumulation in BrM) results in Early sub-RPE CNV. 4) Normal adhesion of RBaM to BrM, but reduced apical RPE-POS or epithelial RPE-RPE adhesion (e.g. due to inflammation) results in Early sub-retinal CNV. 5) Simultaneous reduction in RPE-RPE epithelial binding and RPE-BrM adhesion results in either sub-RPE or sub-retinal CNV which often progresses to combined pattern CNV. These findings suggest that defects in adhesion dominate CNV initiation and progression

    Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Introduction Phytoestrogens are a group of compounds found in plants that structurally resemble the hormone oestradiol, and thus have the potential to act as oestrogen agonists or antagonists. Their potential effects may alter the risk of breast cancer, but only a limited range of phytoestrogens has been examined in prospective cohort studies. Methods Serum and urine samples from 237 incident breast cancer cases and 952 control individuals (aged 45 to 75 years) in the European Prospective into Cancer-Norfolk cohort were analysed for seven phytoestrogens (daidzein, enterodiol, enterolactone, genistein, glycitein, o-desmethylangolensin, and equol) using liquid chromatography/mass spectrometry. Data on participants' diet, demographics, anthropometrics, and medical history were collected upon recruitment. All models were adjusted for weight, fat and energy intake, family history of breast cancer, social class, analytical batch, and factors related to oestrogen exposure. Results Urinary or serum phytoestrogens were not associated with protection from breast cancer in the European Prospective into Cancer-Norfolk cohort. Breast cancer risk was marginally increased with higher levels of total urinary isoflavones (odds ratio = 1.08 (95% confidence interval = 1.00 to 1.16), P = 0.055); among those with oestrogen receptor-positive tumours, the risk of breast cancer was increased with higher levels of urinary equol (odds ratio = 1.07 (95% confidence interval = 1.01 to 1.12), P = 0.013). Conclusion There was limited evidence of an association between phytoestrogen biomarkers and breast cancer risk in the present study. There was no indication of decreased likelihood of breast cancer with higher levels of phytoestrogen biomarkers, but the observation that some phytoestrogen biomarkers may be associated with greater risk of breast cancer warrants further study with greater statistical power

    The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket

    Get PDF
    A common approach in the study of life-history trade-off evolution is to manipulate the nutrient content of diets during the life of an individual in order observe how the acquisition of resources influences the relationship between reproduction, lifespan and other life-history parameters such as dispersal. Here, we manipulate the quality of diet that replicate laboratory populations received as a thorough test of how diet quality influences the life-history trade-offs associated with reproductive investment in a nuptial feeding Australian ground cricket (Pteronemobius sp.). In this species, both males and females make significant contributions to the production of offspring, as males provide a nuptial gift by allowing females to chew on a modified tibial spur during copulation and feed directing on their haemolymph. Individuals also have two distinct wing morphs, a short-winged flightless morph and a long-winged morph that has the ability to disperse. By manipulating the quality of diet over seven generations, we found that the reproductive investment of males and females were affected differently by the diet quality treatment and wing morph of the individual. We discuss the broader implications of these findings including the differences in how males and females balance current and future reproductive effort in nuptial feeding insects, the changing nature of sexual selection when diets vary, and how the life-history trade-offs associated with the ability to disperse are expected to differ among populations

    Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris

    Get PDF
    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model

    Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm

    Get PDF
    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences—using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences
    • …
    corecore