54 research outputs found

    Fatty Acid Metabolism in Myeloid-Derived Suppressor Cells and Tumor-Associated Macrophages: Key Factor in Cancer Immune Evasion

    Get PDF
    The tumor microenvironment (TME) comprises various cell types, soluble factors, viz, metabolites or cytokines, which together play in promoting tumor metastasis. Tumor infiltrating immune cells play an important role against cancer, and metabolic switching in immune cells has been shown to affect activation, differentiation, and polarization from tumor suppressive into immune suppressive phenotypes. Macrophages represent one of the major immune infiltrates into TME. Blood monocyte-derived macrophages and myeloid derived suppressor cells (MDSCs) infiltrating into the TME potentiate hostile tumor progression by polarizing into immunosuppressive tumor-associated macrophages (TAMs). Recent studies in the field of immunometabolism focus on metabolic reprogramming at the TME in polarizing tumor-associated macrophages (TAMs). Lipid droplets (LD), detected in almost every eukaryotic cell type, represent the major source for intra-cellular fatty acids. Previously, LDs were mainly described as storage sites for fatty acids. However, LDs are now recognized to play an integral role in cellular signaling and consequently in inflammation and metabolism-mediated phenotypical changes in immune cells. In recent years, the role of LD dependent metabolism in macrophage functionality and phenotype has been being investigated. In this review article, we discuss fatty acids stored in LDs, their role in modulating metabolism of tumor-infiltrating immune cells and, therefore, in shaping the cancer progression

    Die Hemmung von Histondeazetylasen in chronisch-entzĂĽndlichen Darmerkrankungen

    Get PDF
    Histon-Deacetylase (HDAC) -Inhibitoren wurden ursprünglich für ihre anti-proliferative und pro-apoptotische Wirkung beschrieben. In der vorliegenden Arbeit wird die entzündungshemmende Wirksamkeit von HDAC-Inhibitoren in verschiedenen Modellen experimenteller Kolitis sowie entzündungsassoziierter Tumorgenese beschrieben. Im Speziellen wird hierbei auf die Wirkung der HDAC-Inhibitoren auf die T-Helfer-Zell-Polarisierung und die Regeneration des Darmepithels eingegangen. Zusätzlich wird die Funktion von HDAC5 in der Entzündungsreaktion von Makrophagen beschrieben

    COVID-19—from mucosal immunology to IBD patients

    Get PDF
    Viral infections with SARS-CoV-2 can cause a multi-facetted disease, which is not only characterized by pneumonia and overwhelming systemic inflammatory immune responses, but which can also directly affect the digestive system and infect intestinal epithelial cells. Here, we review the current understanding of intestinal tropism of SARS-CoV-2 infection, its impact on mucosal function and immunology and summarize the effect of immune-suppression in patients with inflammatory bowel disease (IBD) on disease outcome of COVID-19 and discuss IBD-relevant implications for the clinical management of SARS-CoV-2 infected individuals

    dPGS Regulates the Phenotype of Macrophages via Metabolic Switching

    Get PDF
    The synthetic compound dendritic polyglycerol sulfate (dPGS) is a pleiotropic acting molecule but shows a high binding affinity to immunological active molecules as L-/P-selectin or complement proteins leading to well described anti-inflammatory properties in various mouse models. In order to make a comprehensive evaluation of the direct effect on the innate immune system, macrophage polarization is analyzed in the presence of dPGS on a phenotypic but also metabolic level. dPGS administered macrophages show a significant increase of MCP1 production paralleled by a reduction of IL-10 secretion. Metabolic analysis reveals that dPGS could potently enhance the glycolysis and mitochondrial respiration in M0 macrophages as well as decrease the mitochondrial respiration of M2 macrophages. In summary the data indicate that dPGS polarizes macrophages into a pro-inflammatory phenotype in a metabolic pathway-dependent manner

    Role of goblet cell protein CLCA1 in murine DSS colitis

    Get PDF
    Background The secreted goblet cell protein CLCA1 (chloride channel regulator, calcium-activated-1) is, in addition to its established role in epithelial chloride conductance regulation, thought to act as a multifunctional signaling protein, including cellular differentiation pathways and induction of mucus production. Specifically, CLCA1 has recently been shown to modulate early immune responses by regulation of cytokines. Here, we analyze the role of CLCA1, which is highly expressed and secreted by colon goblet cells, in the course of murine dextran sodium sulfate-induced colitis. Findings We compared Clca1-deficient and wild type mice under unchallenged and DSS-challenged conditions at various time points, including weight loss, colon weight-length- ratio and histological characterization of inflammation and regeneration. Expression levels of relevant cytokines, trefoil factor 3 and E-cadherin were assessed via quantitative PCR and cytometric bead arrays. Lack of CLCA1 was associated with a more than two-fold increased expression of Cxcl-1- and Il-17-mRNA during DSS colitis. However, no differences were found between Clca1-deficient and wild type mice under unchallenged or DSS-challenged conditions in terms of clinical findings, disease progression, colitis outcome, epithelial defects or regeneration. Conclusions CLCA1 is involved in the modulation of cytokine responses in the colon, albeit differently than what had been observed in the lungs. Obviously, the pathways involved depend on the type of challenge, time point or tissue environment

    Pro-inflammatory TNF-α and IFN-γ Promote Tumor Growth and Metastasis via Induction of MACC1

    Get PDF
    Colorectal cancer (CRC) is one of the most common malignancies worldwide. Early stage CRC patients have a good prognosis. If distant metastasis occurs, the 5-year survival drops below 10%. Despite treatment success over the last decades, treatment options for metastatic disease are still limited. Therefore, novel targets are needed to foster therapy of advanced stage CRC patients and hinder progression of early stage patients into metastasis. A novel target is the crucial oncogene Metastasis-Associated in Colon Cancer 1 (MACC1) involved in molecular pathogenesis of CRC metastasis. MACC1 induces cell proliferation and motility, supports cellular survival and rewires metabolism resulting in increased metastasis in vivo. MACC1 is a prognostic biomarker not only for CRC but for more than 20 solid cancer entities. Inflammation plays a pivotal role in tumorigenesis, tumor progression and metastasis. For CRC, inflammatory bowel disease and ulcerative colitis are important inflammation associated risk factors. Certain cytokines, such as TNF-α and IFN-γ, are key factors in determining the contribution of the inflammatory process to CRC. Knowledge of the connection between inflammation and MACC1 driven tumors remains unclear. Gene expression analysis of CRC cells after cytokine stimulation was analyzed by qRT-PCR and Western blot. Cellular motility was assessed by Boyden chamber assays. MACC1 promoter activity after stimulation with pro-inflammatory cytokines was measured using promoter-luciferase constructs. To investigate signal transduction from receptor to effector molecules, blocking experiments using neutralizing antibodies and knockdown experiments were performed. Following TNF-α stimulation, MACC1 and c-Jun expression were significantly increased at the mRNA and protein level. Knockdown of c-Jun reduced MACC1 inducibility following TNF-α stimulation. TNF-α promoted MACC1-induced cell migration that was reverted following MACC1 knockdown. Moreover, MACC1 and c-Jun expression were downregulated by blocking TNFR1, but not TNFR2. Knock down of the NF-κB subunit, p65, reduced basal MACC1 and c-Jun mRNA expression levels. Adalimumab, a clinically approved monoclonal anti-TNF-α antibody, hindered MACC1 induction. The present study highlights that TNF-α regulates the induction of MACC1 via the NF-κB subunit p65 and the transcription factor c-Jun in CRC cells. This finding unravels a novel signaling pathway upstream of MACC1 and provides a potential therapeutic target for the treatment of CRC patients with an associated inflammation

    The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS- Challenged Mice

    Get PDF
    The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon

    Interleukin-7 Links T Lymphocyte and Intestinal Epithelial Cell Homeostasis

    Get PDF
    Interleukin-7 (IL-7) is a major survival factor for mature T cells. Therefore, the degree of IL-7 availability determines the size of the peripheral T cell pool and regulates T cell homeostasis. Here we provide evidence that IL-7 also regulates the homeostasis of intestinal epithelial cells (IEC), colon function and the composition of the commensal microflora. In the colon of T cell-deficient, lymphopenic mice, IL-7-producing IEC accumulate. IEC hyperplasia can be blocked by IL-7-consuming T cells or the inactivation of the IL-7/IL-7R signaling pathway. However, the blockade of the IL-7/IL-7R signaling pathway renders T cell-deficient mice more sensitive to chemically-induced IEC damage and subsequent colitis. In summary, our data demonstrate that IL-7 promotes IEC hyperplasia under lymphopenic conditions. Under non-lymphopenic conditions, however, T cells consume IL-7 thereby limiting IEC expansion and survival. Hence, the degree of IL-7 availability regulates both, T cell and IEC homeostasis
    • …
    corecore