9 research outputs found

    Molecular profiling of the intestinal mucosa and immune cells of the colon by multi-parametric histological techniques

    Get PDF
    The impact of the post-mortem interval (PMI) on the optical molecular characteristics of the colonic mucosa and the gut-associated lymphoid tissue (GALT) were examined by multi-parametric measurements techniques. Inflammatory cells were identified by immunohistochemical staining. Molecular parameters were estimated using the Raman spectroscopy (RS) and Fourier Transform Infrared (FTIR) spectroscopic imaging. The 3D refractive index (3D-RI) distributions of samples were determined using the digital holographic tomography. The distribution of immune cells between post-mortem (PM) and normal controls did show significant differences for CD4 (P = 0.0016) or CD8 (P < 0.0001), whose expression level was decreased in PM cases. No association was found between individual PMI values and inflammatory cell distribution. However, there was a tendency for a negative correlation between CD4(+) cells and PMI (r = − 0.542, P = 0.032). The alterations ongoing in post-mortem tissue may suggest that PMI has a suppressive effect on the effector properties of the cell-mediated immunity. Moreover, it was confirmed that spectroscopic and digital holotomographic histology are also a useful technique for characterization of the differences in inflammation of varying intensity and in GALT imaging in a solid tissue. Anatomical location of immune cells and methods of tissue fixation determine the molecular and optical parameters of the examined cases

    The Role of SATB1 in Tumour Progression and Metastasis

    No full text
    Carcinogenesis is a long-drawn, multistep process, in which metastatic spread is an unequivocal hallmark of a poor prognosis. The progression and dissemination of epithelial cancers is commonly thought to rely on the epidermal-mesenchymal transition (EMT) process. During EMT, epithelial cells lose their junctions and apical-basal polarity, and they acquire a mesenchymal phenotype with its migratory and invasive capabilities. One of the proteins involved in cancer progression and EMT may be SATB1 (Special AT-Rich Binding Protein 1)&mdash;a chromatin organiser and a global transcriptional regulator. SATB1 organizes chromatin into spatial loops, providing a &ldquo;docking site&rdquo; necessary for the binding of further transcription factors and chromatin modifying enzymes. SATB1 has the ability to regulate whole sets of genes, even those located on distant chromosomes. SATB1 was found to be overexpressed in numerous malignancies, including lymphomas, breast, colorectal, prostate, liver, bladder and ovarian cancers. In the solid tumours, an elevated SATB1 level was observed to be associated with an aggressive phenotype, presence of lymph node, distant metastases, and a poor prognosis. In this review, we briefly describe the prognostic significance of SATB1 expression in most common human cancers, and analyse its impact on EMT and metastasis

    Effect of Resveratrol Treatment on Human Pancreatic Cancer Cells through Alterations of Bcl-2 Family Members

    No full text
    Pancreatic cancers are among of the most lethal types of neoplasms, and are mostly detected at an advanced stage. Conventional treatment methods such as chemotherapy or radiotherapy often do not bring the desired therapeutic effects. For this reason, natural compounds are increasingly being used as adjuvants in cancer therapy. Polyphenolic compounds, including resveratrol, are of particular interest. The aim of this study is to analyze the antiproliferative and pro-apoptotic mechanisms of resveratrol on human pancreatic cells. The study was carried out on three human pancreatic cancer cell lines: EPP85-181P, EPP85-181RNOV (mitoxantrone-resistant cells) and AsPC-1, as well as the normal pancreatic cell line H6c7. The cytotoxicity of resveratrol in the tested cell lines was assessed by the colorimetric method (MTT) and the flow cytometry method. Three selected concentrations of the compound (25, 50 and 100 ”M) were tested in the experiments during a 48-h incubation. TUNEL and Comet assays, flow cytometry, immunocytochemistry, confocal microscopy, real-time PCR and Western Blot analyses were used to evaluate the pleiotropic effect of resveratrol. The results indicate that resveratrol is likely to be anticarcinogenic by inhibiting human pancreatic cancer cell proliferation. In addition, it affects the levels of Bcl-2 pro- and anti-apoptotic proteins. However, it should be emphasized that the activity of resveratrol was specific for each of the tested cell lines, and the most statistically significant changes were observed in the mitoxantrone-resistant cells

    The Impact of O-Glycosylation on Cyanidin Interaction with RBCs and HMEC-1 Cells—Structure–Activity Relationships

    No full text
    With the aim of contributing to the knowledge about their potential therapeutic activity, we determined the biological activities of cyanidin and its selected O-glycosides in relation to erythrocytes (RBCs) and human dermal vascular endothelial cells (HMEC-1). Furthermore, on the basis of changes in the physical/functional properties of the cells, the structure&ndash;activity relationships of the compounds were determined. Concerning erythrocytes, we analyzed the antioxidant activity of the compounds and their impact on the RBCs&rsquo; shape and transmembrane potential. The compounds&rsquo; cytotoxic activity, ability to modulate apoptosis, cell cycle, and intracellular ROS generation, as well as inhibitory activity against AAPH-inducted oxidative stress, were determined in relation to HMEC-1 cells. We demonstrated that biological activity of cyanidin and its O-glycosides strongly depends on the number and type of sugar substituents, and varies depending on the extracellular environment and type of cells. The compounds are practically non-cytotoxic, and do not induce apoptosis or disturb the progression of the cell cycle. Additionally, the compounds alter the shape of RBCs, but they do not affect their transmembrane potential. They effectively protect erythrocytes against free radicals and affect intracellular reactive oxygen spices (ROS) generation under physiological and AAPH-induced oxidative stress conditions. Our results suggest a potential beneficial effect of cyanidin on the cardiovascular system

    Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock

    No full text
    Inhaled nitric oxide (iNO) remains one of the treatment modalities in shock, and in addition to its vasoactive properties, iNO exerts immunomodulatory effects. We used a porcine model of endotoxemia with shock resuscitation (control) and additional treatment with iNO and a steroid (treatment group). After 20 h, bone marrow (BM), peripheral blood (PB), and bronchoalveolar lavage fluid (BALF) were collected to analyze the immunophenotype and mitochondrial membrane potential (&Delta;&phi;) in three subsets of monocytes. In both groups, SLA-DR expression decreased twofold on the circulating CD14+CD163+ and CD14&minus;CD163+ monocytes, while it did not change on the CD14+CD163+. &Delta;&phi; increased only in the CD14&minus;CD163+ subpopulation (0.8 vs. 2.0, p &lt; 0.001). The analysis of compartment-specific alterations showed that nearly 100% of BALF CD14+CD163+ and CD14&minus;CD163+ monocytes expressed SLA-DR, and it was higher compared to PB (32% and 20%, p &lt; 0.0001) and BM (93% and 67%, p &lt; 0.001, respectively) counterparts. BALF CD14+CD163+ had a threefold higher &Delta;&phi; than PB and BM monocytes, while the &Delta;&phi; of the other subsets was highest in PB monocytes. We confirmed the compartmentalization of the monocyte response during endotoxemic shock, which highlights the importance of studying tissue-resident cells in addition to their circulating counterparts. The iNO/steroid treatment did not further impair monocyte fitness

    Identifying the Molecular Mechanisms and Types of Cell Death Induced by <i>bio</i>- and <i>pyr</i>-Silica Nanoparticles in Endothelial Cells

    No full text
    The term “nanosilica” refers to materials containing ultrafine particles. They have gained a rapid increase in popularity in a variety of applications and in numerous aspects of human life. Due to their unique physicochemical properties, SiO2 nanoparticles have attracted significant attention in the field of biomedicine. This study aimed to elucidate the mechanism underlying the cellular response to stress which is induced by the exposure of cells to both biogenic and pyrogenic silica nanoparticles and which may lead to their death. Both TEM and fluorescence microscopy investigations confirmed molecular changes in cells after treatment with silica nanoparticles. The cytotoxic activity of the compounds and intracellular RNS were determined in relation to HMEC-1 cells using the fluorimetric method. Apoptosis was quantified by microscopic assessment and by flow cytometry. Furthermore, the impact of nanosilica on cell migration and cell cycle arrest were determined. The obtained results compared the biological effects of mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material and indicated that both types of NPs have an impact on RNS production causing apoptosis, necrosis, and autophagy. Although mesoporous silica nanoparticles did not cause cell cycle arrest, at the concentration of 50 ÎŒg/mL and higher they could disturb redox balance and stimulate cell migration

    BCL11A Expression in Non-Small Cell Lung Cancers

    No full text
    B-cell leukemia/lymphoma 11A (BCL11A) may be one of the potential biomarkers of non-small cell lung cancer (NSCLC). However, its role in the development of this cancer has not yet been precisely established. The aim of this study was to investigate the expression of BCL11A at the mRNA and protein levels in NSCLC cases and non-malignant lung tissue (NMLT) and to determine the relationship between BCL11A expression and the clinicopathological factors and Ki-67, Slug, Snail and Twist. The localization and the level of BCL11A protein were examined using immunohistochemistry (IHC) on 259 cases of NSCLC, and 116 NMLT samples were prepared as tissue microarrays and using immunofluorescence (IF) in the following cell lines: NCI-H1703, A549 and IMR-90. The mRNA expression of BCL11A was determined using real-time PCR in 33 NSCLC cases, 10 NMLT samples and the cell lines. BCL11A protein expression was significantly higher in NSCLC cases compared to NMLT. Nuclear expression was found in lung squamous cell carcinoma (SCC) cells, while cytoplasmic expression was demonstrated in adenocarcinoma (AC) cells. Nuclear expression of BCL11A decreased with increasing malignancy grade and correlated positively with Ki-67 and Slug and Twist expression. The opposite relationships were found for the cytoplasmic expression of BCL11A. Nuclear expression of BCL11A in NSCLC cells may affect tumor cell proliferation and change their phenotype, thus promoting tumor progression
    corecore