715 research outputs found

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends

    Ramsar Policy Brief No. 5. Restoring drained peatlands: A necessary step to achieve global climate goals

    Get PDF
    Peatlands cover about 400 million hectares (ha), or 3% of the land surface of our planet. Yet they store more carbon, more effectively and for longer periods, than any other ecosystem on land. Intact peatlands also provide essential ecosystem services such as regulating water cycles, purifying water, and supporting a wealth of biodiversity. Since peat is hidden below ground, it is often unrecognised and can be damaged unknowingly. New, large peatland areas are still being discovered including forest-covered peatlands in the tropics. Around 50 million ha of peatlands globally are currently drained and have been transformed to grazing land, forestry land and cropland, used for peat extraction or impacted by infrastructure. These drained peatlands are responsible for approximately 4% (2 Gt CO2 -eq/year) of all anthropogenic greenhouse gas emissions. Achieving the climate goals of the Paris Agreement requires protection of all remaining intact peatland and rapid restoration of almost all drained peatlands. This will also contribute to delivering the Sustainable Development Goals (SDGs), in particular SDG 6, Target 6.6, on protecting and restoring water related ecosystems and SDG 15, Targets 15.1, on conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, as well as 15.5 on reducing degradation of natural habitats. The United Nations Decade on Ecosystem Restoration 2021-2030 provides the opportunity to rapidly scale up efforts

    Advanced atomic force microscopy techniques

    Get PDF
    Cataloged from PDF version of article.Although its conceptual approach is as simple as the technique used in record players already introduced in the 19th century, the invention of the atomic force microscope (AFM) in 1986 by Binnig, Quate, and Gerber was a milestone for nanotechnology. The scanning tunneling microscope (STM), introduced some years earlier, had already achieved atomic resolution, but is limited to conductive surfaces. Since its operational principle is based on the detection of the forces acting between tip and sample, this restriction does not exist for the AFM. Consequently, atomic force microscopy quickly became the standard tool for nanometer-scale imaging of all types of surfaces in all environments. True atomic resolution was first achieved in the 1990s. The most convincing results, however, were restricted to the so-called noncontact mode in vacuum for a long time, but recent technical developments overcame this limitation, and atomic-resolution imaging is now also a standard in liquids. Beyond pushing the resolution limit to the picometer range, the invention of the AFM triggered the development of a growing number of new scanning probe methods and approaches, ranging from an expansion of the properties that can be mapped to the active manipulation of surfaces and small particles. Practically every month, reports on the growing capabilities of AFMs appear. Nearly every physical effect that influences the tip–sample interaction has been used to improve existing modes and to develop new ones. For example, many recently presented techniques include the excitation of higher cantilever oscillation modes; it is amazing in how many ways the shaking of a simple cantilever can improve our knowledge about the tip–sample interaction. Another direction is high-speed atomic force microscopy, which is one of the eminent challenges that need to be solved in order to allow the in situ observation of biological processes. Data acquisition times have already reached the millisecond range, enabling the visualization of the dynamic behavior of biological molecules and cells. Other recent accomplishments include imaging of organic molecules with unprecedented resolution, full three-dimensional mapping of surface force fields, and the imaging and discrimination of individual chemical bonds. The development of advanced techniques is the focus of this Thematic Series, following the Thematic Series “Scanning probe microscopy and related techniques” edited by Ernst Meyer and the Thematic Series “Noncontact atomic force microscopy” edited by Udo Schwarz. The articles that are part of the series demonstrate that, despite its 25 years of history, the AFM is still far from reaching its limits, and today’s developments are far-reaching. As the number of research groups utilizing advanced atomic force microscopy techniques increases with each passing year, the technical improvements, data-acquisition approaches, analysis procedures, user friendliness, and application areas of the technique further diversify. With this Thematic Series, it is our intention to stimulate these improvements. We thank all authors for contributing their excellent work to this series. Furthermore, we acknowledge all referees for their promptly provided reports keeping the publication times short and attractive for contributors. Finally, we are grateful to the open access policy of the Beilstein Journal of Nanotechnology providing the ground for unrestricted discussions on advanced atomic force microscopy techniques. Thilo Glatzel, Hendrik Hölscher, Thomas Schimmel, Mehmet Z. Baykara, Udo D. Schwarz and Ricardo Garcia December 201

    Long-range interactions in the effective low energy Hamiltonian of Sr2IrO4: a core level resonant inelastic x-ray scattering study

    Get PDF
    We have investigated the electronic structure of Sr2IrO4 using core level resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2g orbitals are practically degenerate in energy. We uncovered that covalency in Sr2IrO4, and generally in iridates, is very large with substantial oxygen ligand hole character in the Ir t2g Wannier orbitals. This has far reaching consequences, as not only the onsite crystal-field energies are determined by the long range crystal-structure, but, more significantly, magnetic exchange interactions will have long range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d^5 materials that can host compass-like magnetic interactions

    Організаційно-економічне забезпечення розвитку електронної промисловості

    Get PDF
    Розкрито питання організаційно-економічного забезпечення електронної промисловості в рамках організаційно-економічного механізму розвитку електронної промисловості на інноваційній основі, який регламентує діяльність державних, галузевих і підприємницьких структур, що забезпечують розвиток електронної промисловості. Ключові слова: електронна промисловість, організаційне забезпечення розвитку електронної промисловості, організаційно-економічний механізм, інноваційний розвиток.  Раскрываются вопросы организационно-экономического обеспечения электронной промышленности в рамках организационно-экономического механизма развития электронной промышленности на инновационной основе, который регламентирует деятельность государственных, отраслевых и предпринимательских структур, обеспечивающих развитие электронной промышленности. Ключевые слова: электронная промышленность, организационное обеспечение развития электронной промышленности, организационно-экономический механизм, инновационное развитие.  The paper deals with the issues of organizational and economic support of electronic industry in the framework of the organizational and economic mechanism of the above industry development on the basis of innovation. It regulates the activities of the government, sectoral and business organizations, which provide the development of the electronic industry. The proposalsare as follows: to work out a State Program of Development of the Electronic Industry, andto create a sectoral information system, a cluster “development of the electronic industry”, holding the electronic industry, a sectoral technology transfer system, training educational and scientific centres for the engineering staff. It is shown that at a corporate level the development of electronic industry is promoted by establishment of production facilities with the use of well-known brands and foreign electronic productions, technologies transfer with consideration of supply channels, introduction of business market mechanisms, IPC standards, and production information systems PDM/PLM. A specific feature of these measures is that to develop the issues of financial and economic, technical and technological, innovation and market support of the electronic industry development the methods of grouping, generalization of economic indicators received from the enterprises of this industry, and economic mathematical modelling using a correlation regression and structural logical analysis have been used. The application of these methods suggests that the use of the organizational and economic support contributes to promising development of the electronic industry in Ukraine which consists in formation of the core of the electronic industry and its integration in the world electronic space in the future. Keywords: electronic industry, organizational support of electronic industry development, organizational and economic mechanism, innovation-based development

    The Structure of the Homunculus. III. Forming a Disk and Bipolar Lobes in a Rotating Surface Explosion

    Full text link
    We present a semi-analytic model for shaping the nebula around eta Carinae that accounts for the simultaneous production of bipolar lobes and an equatorial disk through a rotating surface explosion. Material is launched normal to the surface of an oblate rotating star with an initial kick velocity that scales approximately with the local escape speed. Thereafter, ejecta follow ballistic orbital trajectories, feeling only a central force corresponding to a radiatively reduced gravity. Our model is conceptually similar to the wind-compressed disk model of Bjorkman & Cassinelli, but we modify it to an explosion instead of a steady line-driven wind, we include a rotationally-distorted star, and we treat the dynamics somewhat differently. Continuum-driving avoids the disk inhibition that normally operates in line-driven winds. Our model provides a simple method by which rotating hot stars can simultaneously produce intrinsically bipolar and equatorial mass ejections, without an aspherical environment or magnetic fields. Although motivated by eta Carinae, the model may have generic application to other LBVs, B[e] stars, or SN1987A's nebula. When near-Eddington radiative driving is less influential, our model generalizes to produce bipolar morphologies without disks, as seen in many PNe.Comment: ApJ accepted, 9 page

    A metamorphic inorganic framework that can be switched between eight single-crystalline states

    Get PDF
    The design of highly flexible framework materials requires organic linkers, whereas inorganic materials are more robust but inflexible. Here, by using linkable inorganic rings made up of tungsten oxide (P8W48O184) building blocks, we synthesized an inorganic single crystal material that can undergo at least eight different crystal-to-crystal transformations, with gigantic crystal volume contraction and expansion changes ranging from −2,170 to +1,720 Å3 with no reduction in crystallinity. Not only does this material undergo the largest single crystal-to-single crystal volume transformation thus far reported (to the best of our knowledge), the system also shows conformational flexibility while maintaining robustness over several cycles in the reversible uptake and release of guest molecules switching the crystal between different metamorphic states. This material combines the robustness of inorganic materials with the flexibility of organic frameworks, thereby challenging the notion that flexible materials with robustness are mutually exclusive

    Local Radiative Hydrodynamic and Magnetohydrodynamic Instabilities in Optically Thick Media

    Full text link
    We examine the local conditions for radiative damping and driving of short wavelength, propagating hydrodynamic and magnetohydrodynamic (MHD) waves in static, optically thick, stratified equilibria. We show that so-called strange modes in stellar oscillation theory and magnetic photon bubbles are intimately related and are both fundamentally driven by the background radiation flux acting on compressible waves. We identify the necessary criteria for unstable driving of these waves, and show that this driving can exist in both gas and radiation pressure dominated media, as well as pure Thomson scattering media in the MHD case. The equilibrium flux acting on opacity fluctuations can drive both hydrodynamic acoustic waves and magnetosonic waves unstable. In addition, magnetosonic waves can be driven unstable by a combination of the equilibrium flux acting on density fluctuations and changes in the background radiation pressure along fluid displacements. We briefly describe the conditions under which these instabilities might be manifested in both main sequence stellar envelopes and accretion disks.Comment: 55 pages, revised version accepted for publication by ApJ. New appendix added justifying WKB analysi

    The Nature of the Radiative Hydrodynamic Instabilities in Radiatively Supported Thomson Atmospheres

    Get PDF
    Atmospheres having a significant radiative support are shown to be intrinsically unstable at luminosities above a critical fraction Gamma_crit ~ 0.5-0.85 of the Eddington limit, with the exact value depending on the boundary conditions. Two different types of absolute radiation-hydrodynamic instabilities of acoustic waves are found to take place even in the electron scattering dominated limit. Both instabilities grow over dynamical time scales and both operate on non radial modes. One is stationary and arises only after the effects of the boundary conditions are taken into account, while the second is a propagating wave and is insensitive to the boundary conditions. Although a significant wind can be generated by these instabilities even below the classical Eddington luminosity limit, quasi-stable configurations can exist beyond the Eddington limit due to the generally reduced effective opacity. The study is done using a rigorous numerical linear analysis of a gray plane parallel atmosphere under the Eddington approximation. We also present more simplified analytical explanations.Comment: 18 Pages, 7 figures, uses emulateapj5.sty, accepted to Ap
    corecore