51 research outputs found

    Predictive factors for hepatocellular carcinoma recurrence after curative treatments

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common neoplasm worldwide. Recurrence of HCC after resection or loco-regional therapies represents an important clinical issue as it affects up to 70% of patients. This can be divided into early or late, if it occurs within or after 24 months after treatment, respectively. While the predictive factors for early recurrence are mainly related to tumour biology (local invasion and intrahepatic metastases), late recurrences are mainly related to de novo tumour formation. Thus, it is important to recognize these factors prior to any treatment in each patient, in order to optimize the treatment strategy and follow-up after treatment. The aim of this review is to summarize the current evidence available regarding predictive factors for the recurrence of HCC, according to the different therapeutic strategies available. In particular, we will discuss the role of new ultrasound-based techniques and biological features, such as tumor-related and circulating biomarkers, in predicting HCC recurrence. Recent advances in imaging-related parameters in computed-tomography scans and magnetic resonance imaging will also be discussed

    Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain

    Get PDF
    Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1’s role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical “developmental tumor”, NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation

    Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish

    Get PDF
    Somatic loss-of-function mutations of the additional sex combs-like transcriptional regulator 1 (ASXL1) gene are common genetic abnormalities in human myeloid malignancies and induce clonal expansion of mutated hematopoietic stem cells (HSCs). To understand how ASXL1 disruption leads to myeloid cell transformation, we generated asxl1 haploinsufficient and null zebrafish lines using genome-editing technology. Here, we show that homozygous loss of asxl1 leads to apoptosis of newly formed HSCs. Apoptosis occurred via the mitochondrial apoptotic pathway mediated by upregulation of bim and bid Half of the asxl1+/ - zebrafish had myeloproliferative neoplasms (MPNs) by 5 months of age. Heterozygous loss of asxl1 combined with heterozygous loss of tet2 led to a more penetrant MPN phenotype, while heterozygous loss of asxl1 combined with complete loss of tet2 led to acute myeloid leukemia (AML). These findings support the use of asxl1+/ - zebrafish as a strategy to identify small-molecule drugs to suppress the growth of asxl1 mutant but not wild-type HSCs in individuals with somatically acquired inactivating mutations of ASXL1

    Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    Get PDF
    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    Mapping repetition suppression of the P50 evoked response to the human cerebral cortex

    No full text
    OBJECTIVE: The cerebral network subserving repetition suppression (RS) of the P50 auditory evoked response as observed using paired-identical-stimulus (S1-S2) paradigms is not well-described METHODS: We analyzed S1-S2 data from electrodes placed on the cortices of 64 epilepsy patients. We identified regions with maximal amplitude responses to S1 (i.e., stimulus registration), regions with maximal suppression of responses to S2 relative to S1 (i.e., RS), and regions with no or minimal RS 30-80ms post stimulation. RESULTS: Several temporal, parietal and cingulate area regions were shown to have significant initial registration activity (i.e., strong P50 response to S1). Moreover, prefrontal, cingulate, and parietal lobe regions not previously proposed to be part of the P50 habituation neural circuitry were found to exhibit significant RS. CONCLUSIONS: The data suggest that the neural network underlying the initial phases of the RS process may include regions not previously thought to be involved like the parietal and cingulate cortexes. In addition, a significant role for the frontal lobe in mediating this function is supported. SIGNIFICANCE: A number of regions of interest are identified through invasive recording that will allow further probing of the RS function using less invasive technology
    corecore