18 research outputs found

    Axons mediate the distribution of arylsulfatase A within the mouse hippocampus upon gene delivery.

    Get PDF
    Axonal transport of the lysosomal enzyme arylsulfatase A (ARSA) may be an additional mechanism of enzyme distribution after in vivo brain gene transfer in an animal model of metachromatic leukodystrophy (MLD). Direct molecular demonstration of the movement of this lysosomal enzyme within axonal networks was missing. We generated lentiviral vectors carrying the ARSA cDNA tagged with hemagglutinin or the green fluorescent protein and examined the subcellular localization and anatomical distribution of the tagged enzymes within the MLD hippocampus after in vivo lentiviral gene transfer. The use of tagged ARSA allowed direct real-time observation and tracking of axon–dendritic transport of the enzyme after lentiviral gene therapy. Tagged ARSA was expressed in transduced pyramidal, granule, and hilar neurons within the lentiviral-injected side and was robustly contained in vesicles within ipsilateral axon–dendritic processes as well as in vesicles associated with contralateral axons and commissural axons of the ventral hippocampal commissure. Axonal transport of tagged ARSA led to the correction of hippocampal defects in long-term treated MLD mice, which was accompanied by enzyme uptake in nontransduced contralateral neurons, enzyme accumulation within the lysosomal compartment, and clearance of sulfatide storage deposits in this region of the MLD brain. These results contribute to the understanding of the mechanisms of distribution of lysosomal enzymes within the mammalian brain after direct gene therapy, demonstrating the use of neural processes for enzyme transport

    Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Get PDF
    Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine), demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein) isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination

    CRISPR-Cas9 knock-in of T513M and G41S mutations in the murine β-galactosyl-ceramidase gene re-capitulates early-onset and adult-onset forms of Krabbe Disease

    Get PDF
    Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme β-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. Th

    microRNA-219 Reduces Viral Load and Pathologic Changes in Theiler's Virus-Induced Demyelinating Disease

    Get PDF
    Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties. MicroRNAs (miRs) are small noncoding RNAs that regulate a myriad of biological processes by controlling gene expression. In the latest issue of Molecular Therapy, Moyano et al. show that intranasal delivery of miR-219 in a mouse model of viral demyelination reduces neurological burden and improves life quality through anti-inflammatory and anti-viral mechanisms.Fil: Moyano, Ana Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentina. University of Illinois; Estados UnidosFil: Steplowski, Jeffrey. University of Illinois; Estados UnidosFil: Wang, Haibo. Cincinnati Children's Hospital Medical Center; Estados UnidosFil: Son, Kyung No. University of Illinois; Estados UnidosFil: Rapolti, Diana I.. University of Illinois; Estados UnidosFil: Marshall, Jeffrey. University of Illinois; Estados UnidosFil: Elackattu, Vince. University of Illinois; Estados UnidosFil: Marshall, Michael S.. University of Illinois; Estados UnidosFil: Hebert, Amy K.. University of Illinois; Estados UnidosFil: Reiter, Cory R.. University of Illinois; Estados UnidosFil: Ulloa, Viviana. University of Illinois; Estados UnidosFil: Pituch, Katarzyna C.. University of Illinois; Estados UnidosFil: Givogri, Maria I.. University of Illinois; Estados UnidosFil: Lu, Q. Richard. Cincinnati Children's Hospital Medical Center; Estados UnidosFil: Lipton, Howard L.. University of Illinois; Estados UnidosFil: Bongarzone, Ernesto R.. University of Illinois; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentin

    Waning efficacy in a long-term AAV-mediated gene therapy study in the murine model of Krabbe disease

    Get PDF
    Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies

    The Sphingolipid psychosine inhibits fast axonal transport in krabbe disease by activation of GSK3 and deregulation of molecular motors

    Get PDF
    Loss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3β in the axon. Abnormal levels of activated GSK3β and abnormally phosphorylated kinesin light chains were found in nerve samples from a mouse model of Krabbe disease. Administration of GSK3β inhibitors significantly ameliorated transport defects in vitro and in vivo in peripheral axons of the mutant mouse. This study identifies psychosine as a pathogenic sphingolipid able to block fast axonal transport and is the first to provide a molecular mechanism underlying dying-back degeneration in this genetic leukodystrophy

    Neuronal inclusions of alpha-synuclein contribute to the pathogenesis of Krabbe disease

    No full text
    Demyelination is a major contributor to the general decay of neural functions in children with Krabbe disease. However, recent reports have indicated a significant involvement of neurons and axons in the neuropathology of the disease. In this study, we have investigated the nature of cellular inclusions in the Krabbe brain. Brain samples from the twitcher mouse model for Krabbe disease and from patients affected with the infantile and late-onset forms of the disease were examined for the presence of neuronal inclusions. Our experiments demonstrated the presence of cytoplasmic aggregates of thioflavin-S-reactive material in both human and murine mutant brains. Most of these inclusions were associated with neurons. A few inclusions were detected to be associated with microglia and none were associated with astrocytes or oligodendrocytes. Thioflavin-S-reactive inclusions increased in abundance, paralleling the development of neurological symptoms, and distributed throughout the twitcher brain in areas of major involvement in cognition and motor functions. Electron microscopy confirmed the presence of aggregates of stereotypic β-sheet folded proteinaceous material. Immunochemical analyses identified the presence of aggregated forms of α-synuclein and ubiquitin, proteins involved in the formation of Lewy bodies in Parkinson's disease and other neurodegenerative conditions. In vitro assays demonstrated that psychosine, the neurotoxic sphingolipid accumulated in Krabbe disease, accelerated the fibrillization of α-synuclein. This study demonstrates the occurrence of neuronal deposits of fibrillized proteins including α-synuclein, identifying Krabbe disease as a new α-synucleinopathy.Fil: Smith, Benjamin R.. University of Illinois; Estados UnidosFil: Santos, Marta B.. University of Illinois; Estados UnidosFil: Marshal, Michael S.. University of Illinois; Estados UnidosFil: Cantuti Castelvetri, Ludovico. University of Illinois; Estados UnidosFil: Lopez Rosas, Aurora. University of Illinois; Estados UnidosFil: Li, Guannan. University of Illinois; Estados UnidosFil: Van Breemen, Richard B.. University of Illinois; Estados UnidosFil: Claycomb, Kumiko I.. University Of Connecticut; Estados UnidosFil: Gallea, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Celej, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Crocker, Stephen. University Of Connecticut; Estados UnidosFil: Givogri, Maria I.. University of Illinois; Estados UnidosFil: Bongarzone, Ernesto R.. University of Illinois; Estados Unido

    Psychosine enhances the shedding of membrane microvesicles: Implications in demyelination in Krabbe’s disease

    No full text
    <div><p>In prior studies, our laboratory showed that psychosine accumulates and disrupts lipid rafts in brain membranes of Krabbe’s disease. A model of lipid raft disruption helped explaining psychosine’s effects on several signaling pathways important for oligodendrocyte survival and differentiation but provided more limited insight in how this sphingolipid caused demyelination. Here, we have studied how this cationic inverted coned lipid affects the fluidity, stability and structure of myelin and plasma membranes. Using a combination of cutting-edge imaging techniques in non-myelinating (red blood cell), and myelinating (oligodendrocyte) cell models, we show that psychosine is sufficient to disrupt sphingomyelin-enriched domains, increases the rigidity of localized areas in the plasma membrane, and promotes the shedding of membranous microvesicles. The same physicochemical and structural changes were measured in myelin membranes purified from the mutant mouse Twitcher, a model for Krabbe’s disease. Areas of higher rigidity were measured in Twitcher myelin and correlated with higher levels of psychosine and of myelin microvesiculation. These results expand our previous analyses and support, for the first time a pathogenic mechanism where psychosine’s toxicity in Krabbe disease involves deregulation of cell signaling not only by disruption of membrane rafts, but also by direct local destabilization and fragmentation of the membrane through microvesiculation. This model of membrane disruption may be fundamental to introduce focal weak points in the myelin sheath, and consequent diffuse demyelination in this leukodystrophy, with possible commonality to other demyelinating disorders.</p></div
    corecore