85 research outputs found

    Advancing sustainability in the maritime sector: energy design and optimization of large ships through information modelling and dynamic simulation

    Get PDF
    This paper deals with a new energy design approach for ships to reduce the fuel consumption and the related environmental impact. The proposed method is based on the application of the Building Information Modeling (BIM) to Building Energy Modeling (BEM) technique. Specifically, by a BIM model of the ship a 3D physics-based model (BEM) can be suitably created. Then, by BEM the ship energy performance is simulated under real and dynamic operating conditions. By the presented method the whole design-to-delivery process of the ship can be simplified and speeded up with respect to traditional approaches, without losing reliability. As an example, HVAC systems design is easier through BIM since a high number of thermal zones can be effectively handled. Due to BEM, also the optimal design for exploiting waste heat recoveries of on-board combustion engines is easier and faster. To show the capability of the proposed approach a suitable case study was developed. Basically, it concerns the energy performance analysis of the Allure of the Seas, a 6000-passenger cruise ship operating in the Caribbean Sea. Two different scenarios for recovering the waste heat of the ship diesel generators are investigated. Simulation results highlight that significant primary energy saving can be obtained by optimizing the strategy to recover the available thermal energies (up to 600 MWh per trip), with a remarkable amount of avoided pollutant emissions (58, 0.06, 4.0, 0.2, 2.0 kg/km of CO2, PM2.5, NOx, HC, SOx, respectively).The presented new approach can be easily adopted to design and optimize the energy system of any new or existing ships, with the twofold aim to achieve economic savings and to fulfil environmental sustainability standards

    THE NUTRITIONAL ROLE OF VITAMIN D DURING THE SARS COVID-19 PANDEMIC

    Get PDF
    The supplementary intake of vitamin D is one of the most debated topics in the medical field, a source of controversy and convictions that are also strongly antithetical. Both the judgment of clinicians and public opinion consider this vitamin necessary for the maintenance of bone health, but also for the prevention and treatment of a number of diseases, including diabetes mellitus, autoimmune diseases, neoplasms, multiple sclerosis, heart disease, stroke, depression and more association between low levels of serum 25-hydroxyvitamin D. In fact, Vitamin D is responsible for regulation of calcium and phosphate metabolism and maintaining a healthy mineralized skeleton. It is also known as an immunomodulatory hormone. Experimental studies have shown that 1,25-dihydroxyvitamin D, the active form of vitamin D, exerts immunologic activities on multiple components of the innate and adaptive immune system as well as endothelial membrane stability. Association between low levels of serum 25-hydroxyvitamin D. Vitamin D plays a fundamental role in nutrition, especially for the new evidence related to the SARS pandemic Covid-19 and for this reason it is important to maintain optimal levels of the vitamin, controlled through food

    Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions

    No full text

    LYCOPENE AND THE ROLE IN METABOLIC PREVENTION

    Get PDF
    The origin of the tomato plant seems to be South America, in particular Chile and Ecuador, where it grows as a wild plant due to the tropical climate and is able to bear fruit throughout the year, while in European regions, if cultivated in 'open, has a seasonal cycle limited to the summer period. From here, it later spread to Central America and it was the Spaniards who made it known in Europe in the 16th century. Only at the end of the 18th century, the cultivation of tomatoes for food purposes experienced a strong boost in Europe, mainly in France and Southern Italy. Starting from the 19th century, the tomato was finally included in European gastronomic treaties, favoring a conspicuous diffusion both on the tables of the richest and those of the less well-off. Today tomatoes are a staple of our diet a series of researches have identified the effects that the consumption of this particular food, in its many variations, has on our health. If previously the effects that tomatoes have on the improvement of blood lipids were recognized, now researchers have identified a direct correlation between the risk of cardiovascular mortality and the consumption of the fruit, for the presence of Lycopene, a carotenoid antioxidant. It is lycopene, in particular, that produces the greatest benefits for our body. It is a powerful antioxidant that determines, among other things, the particular red color of the tomato. Through research on the effects of a diet rich in tomatoes on the body, the experts found a progressive decrease in the concentration of cholesterol accompanied by a decrease in cardiovascular risk

    HEALTH PROPERTIES OF LYCOPERSICUM ESCULENTUM

    Get PDF
    The tomato, Lycopersicum esculentum, is a horticultural plant belonging to the Solanaceae family. In Italy, the term "tomato" is found for the first time in the famous "Herbarius" by Pietro Mattioli. The etymology of the name leads back to the Latin "pomum aureus", apple or golden apple. Unlike in other languages, such as English, the term "tomato" is linked to the etymology of the Aztec version "Xitotomate". The origin of the tomato plant seems to be South America, in particular Chile and Ecuador, where it grows as a wild plant due to the tropical climate and is able to bear fruit throughout the year, while in European regions, if cultivated in 'open, has a seasonal cycle limited to the summer period. From here, it later spread to Central America and it was the Spaniards who made it known in Europe in the 16th century. The cultivation of the tomato plant was already widespread in the pre-Columbian age, when it was used as an ornamental plant and was not used in the kitchen: this is because the tomato was considered poisonous due to its high content in solanine, a substance considered harmful for the 'man. In 1544, the Italian herbalist Pietro Mattioli classified the tomato plant among the poisonous species. It is not clear when the tomato, as an ornamental and poisonous plant, was considered edible by Europeans; it should be noted that not even the inhabitants of South America ate the fruits of the plant. From Europe, or perhaps more precisely from Spain, the tomato plant landed in Morocco, where it found an ideal climate, and from there it spread throughout the Mediterranean basin. Starting from the seventeenth century, in southern Europe, as well as in Bohemia and England, the tomato began to be used fresh and for the preparation of sauces, while its diffusion as a food in northern Europe encountered many difficulties, perhaps due to the presence of other similar wild plants which, due to their high alkaloid content, were not suitable for food consumption. Only at the end of the 18th century, the cultivation of tomatoes for food purposes experienced a strong boost in Europe, mainly in France and Southern Italy. Starting from the 19th century, the tomato was finally included in European gastronomic treaties, favoring a conspicuous diffusion both on the tables of the richest and those of the less well-off

    Vitamin d in the prevention, development and therapy of oncological diseases

    Get PDF
    Vitamin D, traditionally known as a fat-soluble essential vitamin, is a precursor of a powerful steroid hormone that regulates a broad spectrum of physiological processes. In addition to its fundamental role in bone metabolism, epidemiological, preclinical and cellular researches in recent decades have revealed that vitamin D can play a considerable role in the prevention of some pathologies, including extra-skeletal ones, such as neoplasms. Vitamin D, as a prohormone, undergoes first hepatic and subsequently renal metabolism to produce a biologically active metabolite, calcitriol or 1α,25-dihydroxyvitamin D or (1,25 (OH)2D), which binds the vitamin D receptor by regulating the expression of several genes involved in bone metabolism and other biological functions. Furthermore, recent studies have revealed that vitamin D can be also metabolized and activated through a non-canonical metabolic pathway catalyzed by CYP11A1, the gene encoding the cholesterol side chain cleavage enzyme or P450scc. The metabolites of vitamin D deriving from the CYP11A1 enzyme have shown antiproliferative and anti-inflammatory activities and are able to promote the differentiation process on neoplastic cells in comparable way or better than calcitriol, thus contributing to its tumor preventive effect. Clinical data have demonstrated that vitamin D has anticancer activity against prostate, colon, and breast cancers. Several molecular mechanisms of vitamin D involved in tumor etiopathogenesis have been proposed that have not yet been fully clarified. Vitamin D may play a key role in preventing the early stage of the neoplastic process by exerting anti-inflammatory, antioxidant defenses and inducing enzymes responsible for repairing DNA damage and could also be involved in mechanisms of inhibition of cell proliferation, induction of cell differentiation, and cell death. In addition, some studies indicate various mechanisms through which vitamin D can quantitatively and qualitatively influence the intestinal microbiota, strongly linked to chronic inflammatory bowel diseases and the development of colon cancer. However, the metabolism and functions of vitamin D are dysregulated in some neoplasms which therefore develop resistance to the antiproliferative effect of vitamin D, and this promotes tumor development and progression. In this review, studies regarding vitamin D in relation to its activity in cancer have been summarized, as long as the metabolic pathways described for vitamin D

    Low‐carbon transition risks for finance

    Get PDF
    The transition to a low‐carbon economy will entail a large‐scale structural change. Some industries will have to expand their relative economic weight, while other industries, especially those directly linked to fossil fuel production and consumption, will have to decline. Such a systemic shift may have major repercussions on the stability of financial systems, via abrupt asset revaluations, defaults on debt, and the creation of bubbles in rising industries. Studies on previous industrial transitions have shed light on the financial transition risks originating from rapidly rising “sunrise” industries. In contrast, a similar conceptual understanding of risks from declining “sunset” industries is currently lacking. We substantiate this claim with a critical review of the conceptual and historical literature, which also shows that most literature either examines structural change in the real economy, or risks to financial stability, but rarely both together. We contribute to filling this research gap by developing a consistent theoretical framework of the drivers, transmission channels, and impacts of the phase‐out of carbon‐intensive industries on the financial system and on the feedback from the financial system into the rest of the economy. We also review the state of play of policy aiming to protect the financial system from transition risks and spell out research implications

    Beam Modulation for Aberration Control and Signal Enhancement in Tip-Enhanced Raman Spectroscopy

    No full text
    Tip-enhanced Raman spectroscopy (TERS) provides the sensitivity required to obtain the vibrational fingerprint of few molecules. While single molecule detection has been demonstrated in UHV experiments, the sensitivity of the technique in ambient, liquid and electrochemical conditions is still limited. In this work, we present a new strategy to increase the signal-to-noise in TERS by spatial light modulation. We iteratively optimize the phase of the excitation beam employing two different feedback mechanisms. In one optimization protocol, we monitor the spectral changes upon aberration correction and tight far-field focusing. In a second protocol, we use a phase-optimization strategy where TER spectra are directly used for feedback. Far-field tight focusing results in average signal enhancements of a factor of 3.5 in air and has no impact on TER signals obtained from solid/liquid interfaces. Using the TER spectrum as direct feedback, we obtain average signal enhancements between a factor of 2.6 in liquid and 4.3 in air. In individual cases, some bands increase by more than one order of magnitude in intensity upon spatial light modulation. Importantly, phase modulation in addition allowed the retrieval of bands that were initially not discernible from the noise. The proposed beam-modulation strategy can be easily implemented in existing TERS instruments and can help to push the detection limit of the technique in applications where the signal-to-noise level is low

    Towards zero energy infrastructure buildings: optimal design of envelope and cooling system

    No full text
    Optimal design of building envelopes/HVAC systems and free cooling strategies are today necessary to reduce energy, economic and environmental impact of telecommunication, electricity distribution, or electric transportations infrastructures. To this aim, designers and operators require advanced techniques and tools. Target of this paper is to present the development of a simulation model for assessing and optimizing cooling performance of new/existing infrastructures to be designed/refurbished from the energy point of view. The model is implemented in a computer tool to assess the related potential benefits of different energy saving technologies/strategies and optimize different objective functions. By the presented approach new design and operating criteria are developed by varying all the occurring boundary conditions (weather, temperature limitations, electricity tariffs, etc.). To show the capability and suitability of the proposed approach, a case study concerning the equipment cooling of a railway substation is developed. The analysis is conducted for different Italian climates, obtaining remarkable energy savings. Specifically, by optimizing free cooling operation and thermal insulation the cooling energy consumption can be decreased up to 80% and 10%, respectively. By an energy refurbishment of all the Italian railway substations an annual electricity cost reduction due to equipment conditioning of about 0.5 M€ can be achieved, 47% lower
    • 

    corecore