48 research outputs found

    Considering the degradation effects of amino-functional plasma polymer coatings for biomedical application

    Get PDF
    Materials for biomedical applications typically involve surface engineering. Scaffolds used for tissue engineering, for example, require a surface functionalization in order to support cell growth. The deposition of functional plasma polymer coatings seems to be an attractive approach to modify substrates for biomedical applications.Possible degradation of highly functional plasma polymers and the effect of its degradation products on cell growth, however, are not yet investigated in detail. Plasma polymer formation is governed by gas phase (mainly determining the chemical composition) and surface processes (inducing cross-linking) which both influence the incorporation of amino groups in a-C:H:N coatings deposited by NH₃/C₂H₄ discharges. Aging is studied in air and in aqueous conditions revealing the degradation of such plasma polymers (loss in thickness and loss of amino groups). Degradation products seem to influence viability and proliferation of mouse skeletal muscle cells on electrospun poly(ε-caprolactone) scaffolds. Thus, possible chemical changes as a function of time or exposure to different media must be taken into account in the design of functional plasma polymer coatings for biomedical applications in order to avoid possible adverse effects on cell growth

    Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection

    Get PDF
    The state-of-the-art hernia meshes, used in hospitals for hernia repair, are predominantly polymeric textile-based constructs that present high mechanical strength, but lack antimicrobial properties. Consequently, preventing bacterial colonization of implanted prosthetic meshes is of major clinical relevance for patients undergoing hernia repair. In this study, the co-axial electrospinning technique was investigated for the development of a novel mechanically stable structure incorporating dual drug release antimicrobial action. Core/shell structured nanofibers were developed, consisting of Nylon-6 in the core, to provide the appropriate mechanical stability, and Chitosan/Polyethylene oxide in the shell to provide bacteriostatic action. The core/shell structure consisted of a binary antimicrobial system incorporating 5-chloro-8-quinolinol in the chitosan shell, with the sustained release of Poly(hexanide) from the Nylon-6 core of the fibers. Homogeneous nanofibers with a "beads-in-fiber" architecture were observed by TEM, and validated by FTIR and XPS. The composite nanofibrous meshes significantly advance the stress-strain responses in comparison to the counterpart single-polymer electrospun meshes. The antimicrobial effectiveness was evaluated in vitro against two of the most commonly occurring pathogenic bacteria; S. aureus and P. aeruginosa, in surgical site infections. This study illustrates how the tailoring of core/shell nanofibers can be of interest for the development of active antimicrobial surfaces

    Environmentally controlled emulsion electrospinning for the encapsulation of temperature-sensitive compounds

    Get PDF
    The introduction of highly volatile fragrances within polymeric nano-scaled fibers is a promising route for efficient and simple encapsulation of temperature-sensitive materials. This work describes the investigation of selected parameters influencing the electrospinning of emulsions of poly(vinyl alcohol) (PVA) and (R)-(+) limonene or hexadecane. Thereby the influence of environmental parameters such as temperature and relative humidity on the fiber structure and encapsulation efficiency (EE) of the fragrance is demonstrated. For that purpose, the electrospinning process was carried out in a climatic cabin in which temperature and relative humidity were controlled. Studied temperatures ranged from 8 to 24°C and relative humidity varied between 55 and 85%. The influence of temperature was dependent on the PVA concentration in the emulsion. The relative humidity influenced both the obtained fiber morphology and fragrance EE to a higher extent than the temperature due to the hydrophilic nature of the PVA. This study is of importance when considering the use of emulsion electrospinning for encapsulation purposes

    Steering surface topographies of electrospun fibers: understanding the mechanisms

    Get PDF
    A profound understanding of how to tailor surface topographies of electrospun fibers is of great importance for surface sensitive applications including optical sensing, catalysis, drug delivery and tissue engineering. Hereby, a novel approach to comprehend the driving forces for fiber surface topography formation is introduced through inclusion of the dynamic solvent-polymer interaction during fiber formation. Thus, the interplay between polymer solubility as well as computed fiber jet surface temperature changes in function of time during solvent evaporation and the resultant phase separation behavior are studied. The correlation of experimental and theoretical results shows that the temperature difference between the polymer solution jet surface temperature and the dew point of the controlled electrospinning environment are the main influencing factors with respect to water condensation and thus phase separation leading to the final fiber surface topography. As polymer matrices with enhanced surface area are particularly appealing for sensing applications, we further functionalized our nanoporous fibrous membranes with a phosphorescent oxygen-sensitive dye. The hybrid membranes possess high brightness, stability in aqueous medium, linear response to oxygen and hence represent a promising scaffold for cell growth, contactless monitoring of oxygen and live fluorescence imaging in 3-D cell models

    Grafting of calcium chelating functionalities onto PLA monofilament fiber surfaces

    Get PDF
    Polymer surface grafting is widely used in the field of bone regeneration to increase calcium phosphate (CaP) adhesion, with the intent of improving mechanical properties of CaP-polymer composite cements. Reinforcement can be achieved using multiple combined functional groups and/or complex surface geometries that, however, concurrently influence multiple effects such as wetting, roughness, and interfacial strengthening. This study focused on the influence of a chelating group, namely aspartic acid, on the adsorption of divalent ions such as Ba²⁺ or Ca²⁺ onto poly-l-lactic acid (PLA) films. The films were analyzed using contact angle measurements and X-ray photoelectron spectroscopy. The adsorption of CaP and its interfacial mechanical properties were investigated using functionalized PLA monofilaments whose surface roughness was analyzed using white light interferometry. Mechanical analysis was conducted by performing pull-out tests. The surfaces were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Using aspartic acid as a chelating group resulted in a 50 % increased adsorption of barium, an almost threefold increase in calcium coverage of the fiber compared to the control group and a twofold increase in interfacial stiffness. No significant increase in interfacial strength was determined, most likely due to the weakness of the CaP matrix, which was partially visible as residues on the monofilaments in the postfracture imaging. This study shows the potential of surfaces functionalized with aspartic acid as a simple alternative to complex polypeptide based functional groups for the adsorption of divalent ions such as calcium on poly-lactic acid in bone regenerating applications

    Anisotropically oriented electrospun matrices with an imprinted periodic micropattern: a new scaffold for engineered muscle constructs

    Get PDF
    Engineered muscle constructs provide a promising perspective on the regeneration or substitution of irreversibly damaged skeletal muscle. However, the highly ordered structure of native muscle tissue necessitates special consideration during scaffold development. Multiple approaches to the design of anisotropically structured substrates with grooved micropatterns or parallel-aligned fibres have previously been undertaken. In this study we report the guidance effect of a scaffold that combines both approaches, oriented fibres and a grooved topography. By electrospinning onto a topographically structured collector, matrices of parallel-oriented poly(ε-caprolactone) fibres with an imprinted wavy topography of 90 µm periodicity were produced. Matrices of randomly oriented fibres or parallel-oriented fibres without micropatterns served as controls. As previously shown, un-patterned, parallel-oriented substrates induced myotube orientation that is parallel to fibre direction. Interestingly, pattern addition induced an orientation of myotubes at an angle of 24° (statistical median) relative to fibre orientation. Myotube length was significantly increased on aligned micropatterned substrates in comparison to that on aligned substrates without pattern (436 ± 245 µm versus 365 ± 212 µm; p < 0.05). We report an innovative, yet simple, design to produce micropatterned electrospun scaffolds that induce an unexpected myotube orientation and an increase in myotube length
    corecore