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Abstract
Engineered muscle constructs provide a promising perspective on the regeneration or
substitution of irreversibly damaged skeletal muscle. However, the highly ordered structure of
native muscle tissue necessitates special consideration during scaffold development. Multiple
approaches to the design of anisotropically structured substrates with grooved micropatterns or
parallel-aligned fibres have previously been undertaken. In this study we report the guidance
effect of a scaffold that combines both approaches, oriented fibres and a grooved topography.
By electrospinning onto a topographically structured collector, matrices of parallel-oriented
poly(ε-caprolactone) fibres with an imprinted wavy topography of 90 μm periodicity were
produced. Matrices of randomly oriented fibres or parallel-oriented fibres without
micropatterns served as controls. As previously shown, un-patterned, parallel-oriented
substrates induced myotube orientation that is parallel to fibre direction. Interestingly, pattern
addition induced an orientation of myotubes at an angle of 24◦ (statistical median) relative to
fibre orientation. Myotube length was significantly increased on aligned micropatterned
substrates in comparison to that on aligned substrates without pattern (436 ± 245 μm versus
365 ± 212 μm; p < 0.05). We report an innovative, yet simple, design to produce
micropatterned electrospun scaffolds that induce an unexpected myotube orientation and an
increase in myotube length.
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1. Introduction

In the last decade, biomaterial sciences have broadly
contributed to the emergence of new therapeutic approaches in
regenerative muscle medicine. Engineered muscle constructs,
composed of an adequate scaffold and autologous muscle
cells represent a promising treatment for patients with either
irreversible skeletal muscle damage or insufficient intrinsic
muscle repair capacity (Koning et al 2009, Rossi et al
2010). The design of a tissue-specific scaffold, however,
faces numerous challenges related to material choice and
processing. Indeed, the influence of mechanical, chemical
and architectural properties of the substrate material on the
morphology, proliferation and differentiation of myoblasts has
been clearly demonstrated (Engler et al 2004, Riboldi et al
2005, Choi et al 2008, Guex et al 2012, Ricotti et al 2012).

During native myogenesis, generation of a primary
myotube layer with a highly oriented pattern provides a
substrate for further myotube incorporation, comprising a
strongly hierarchical mechanism to direct muscle tissue
formation (Ontell 1977, Duxson et al 1989, Hauschka et al
1994, Zhang and McLennan 1995, Wigmore and Dunglison
1998). Secondary myotubes come to lie within micron-scaled
grooves generated by the primary myotube layer to build-up
the tissue. Hence, it is now widely accepted that inducing
myoblast alignment prior to myotube fusion (Wakelam
1985), and controlling the in vitro tissue organization, is of
particular importance for functionalmuscle tissue engineering.
Accordingly, integrated modulations of scaffold surface
architecture at the nano- or micron-scale with parallel-oriented
structures (often referred to anisotropic scaffolds) have been
used to promote spatial alignment of myoblasts. Among
different approaches, patterned polydimethylsiloxane (PDMS)
substrates were designed using lithography of UV light,
electron beam or ion beam. Micron-scale periodic grooves
have been shown to increase myoblast orientation (Lam
et al 2006, Charest et al 2007, Gingras et al 2009, Shimizu
et al 2009, Altomare et al 2010). Myoblasts and myotubes
aligned on substrates with groove widths of 0.45–50 μm,
with a minimal threshold requirement of 130 nm. An
alternative strategy consists of electrospinning synthetic
polymers to produce parallel-oriented nano- or micron-scaled
fibres (Riboldi et al 2005, Choi et al 2008, Aviss et al 2010,
Ricotti et al 2012). Additionally, we have recently shown
(Guex et al 2012) that myoblasts align preferentially on
parallel-oriented nano- to submicron-sized fibres of poly(ε-
caprolactone) (PCL), as compared to those randomly oriented.

We investigated the hypothesis that the dual-level, fibrous
topography of periodic grooves closely mimics the structure of
the primary myotube layer, formed during foetal myogenesis
(Ontell 1977, Duxson et al 1989,Hauschka et al 1994), thereby
proving an adequate scaffold for myotube formation. We
aimed for the design of a topography without sharp boundaries
that supports lateral, as well as longitudinal migration and
fusion of myoblasts, generating wider and longer myotubes.
To do so, we developed an innovative, yet very simple, method
to produce micropatterned matrices of parallel-oriented fibres.
Despite tremendous effort on both micropatterned substrates

Table 1. Electrospinning process parameters applied to produce
fibrous matrices.

Distance Voltage Flow rate
Matrix Collector (cm) (kV) (μL min–1)

Randomly- Static (plate) 15 10/−2 7
oriented
Parallel- Rotating drum 15 10/−5 7–10
aligned
Micropatterned Rotating drum 20 10/−4 10

with relief

and electrospun matrices, these two approaches have rarely
been combined. These matrices were evaluated using a cell
culture of murine myoblasts (C2C12 cell line). Cell viability,
proliferation, orientation and differentiation were assessed in
response to surface architecture.

2. Materials and methods

2.1. Substrate production and characterization

Poly(ε-caprolactone) (PCL, 80 000 g mol−1), glacial acetic
acid (CH3COOH, 99%) and pyridine (C5H5N, �99%), were
purchased from Sigma-Aldrich, Buchs, Switzerland. PCL was
dissolved in glacial acetic acid/pyridine (100:1) to obtain
a 15% w/v solution. Fibrous matrices were produced by
electrospinning as previously reported (Moghe et al 2009,
Guex et al 2012). Briefly, the apparatus consisted of a positive
(applied to the needle) and a negative (applied to the collector)
voltage supply source (aip Wild AG, Oberglatt, Switzerland)
that maintained an electrical field. A constant polymer flow of
the spinning solution was provided by an infusion pump (KD
Scientific, Holliston,USA). Spinning parameters are displayed
in table 1. Randomly-oriented fibres were assembled on a
planar steel plate. Anisotropic scaffolds of parallel-oriented
fibres were collected on a rotating drum (about 1000 rpm),
whereas parallel-oriented fibres with an additional periodic
pattern were produced by spinning onto a rotating drum with
an engraved relief. The relief consisted of a continuous wavy
pattern of 90 μm periodicity at a depth of 14 μm (figure 1).
The relief was engraved during the production of the drum.

Matrix architecture and fibre diameter were characterized
by scanning electron microscopy (SEM, Hitachi S-4800;
Hitachi High-Technologies US and Canada, Illinois, USA).
Substrates were plasma gold sputtered (Polaron Equipment,
SEM coating Unit E5100, Kontron AG, Switzerland; 5 mA,
1 mbar) prior to image acquisition at an accelerating voltage
of 2 kV and 10 μA current flow. For fibre diameter evaluation,
100 values per condition were measured.

Mechanical properties were assessed on an Instron 4500
apparatus (Instron, Norwood, USA) as previously reported
(Guex et al 2012). Substrates of 600 mm2 were conditioned
overnight at 25 ◦C and 65% relative humidity and stress–strain
curves were recorded at a displacement rate of 25 mm min−1.
Stress was normalized to the cross sectional surface area,
taking into account the cross sectional area of the patch. Three
measurements per matrix type were performed.
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Figure 1. SEM images of the relief on the drum. A cast PCL film was used to visualize engraved topography on the drum (a) and (b) top
view, (c) cross sectional view. The pattern had a periodicity of 90 μm and a depth of 14 μm. Scale bar on panel (a) represents 300 μm.

2.2. Cell culture

All experiments were carried out with mouse skeletal
myoblasts, cell line C2C12 (ATCC, Manassas, USA) under
aseptic conditions using sterile, RNAse/DNAse-free tissue
culture plastic (BD, Biosciences, San José, USA and TCPS,
TPP Omnilab, Mettmenstetten, Switzerland). Cell culture was
maintained at 37 ◦C and 5% CO2 in a humidified incubator
(Thermo Forma, Model 371, Thermo Fisher Scientific,
Waltham, USA). Experiments were performed in triplicate.

Expansion of C2C12 cells was carried out in growth
medium (Ham F-12, Gibco, Invitrogen, Carlsbad, USA)
enriched with 10% foetal bovine serum (FBS, PAA
clone, Connectorate AG, Dietikon, Switzerland), 1.25%
penicillin/streptomycin solution (P/S, 100 μg mL−1, Gibco,
Invitrogen, Carlsbad, USA) and supplemented with 5 ng
mL−1 human fibroblast growth factor-basic (bFGF, Sigma-
Aldrich, Buchs, Switzerland) and 40μg mL−1 dexamethasone
(Dex, Sigma-Aldrich, Buchs, Switzerland). Myotube
differentiation was induced by changing from growth medium
to serum deficient differentiation medium (Dulbecco’s
Modified Eagle Medium (DMEM, Gibco, Invitrogen,
Carlsbad, USA), supplemented with 7% temperature
decomplemented horse serum (Gibco, Invitrogen, Carlsbad,
USA) and 100 μg mL−1 P/S). Medium was refreshed every
other day.

For cell culture on matrices, culture dishes (Costar,
Corning Incorporated, Corning, USA) were coated with
silicone (Sylgard-184 two component silicone, Dow Corning
Corporation, Midland, USA). Blank matrices of 6 mm
diameter were fixed on the silicone coatings with stainless
steel minutiae insect pins (EntoSPHINX, Pardubice, Czech
Republic). Matrices were sterilized under UV-light overnight.
Cell seeding was accomplished by deposing 0.25 × 106 cells
in 50 μL medium on the matrices. Cells were cultured for
three days in growth medium, and further maintained in
differentiation medium for ten days.

2.2.1. Cell viability and proliferation. An MTT assay (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,
Sigma-Aldrich, Buchs, Switzerland) was used for cell viability
assessment. Spectrophotometrical quantification (Infinite 200,
Tecan Trading AG, Männedorf, Switzerland at 540 nm
maximal absorption) was performed following 2 h incubation
with 0.5 mg mL−1 MTT in culture medium, followed by

transfer to 100% isopropanol (Spitalpharmazie, Inselspital,
Bern, Switzerland).

Substrate toxicity, quantified by lactate dehydrogenase
(LDH) release into culture medium was assessed on days 3,
5 and 7 using an LDH kit (Tox-7, Sigma-Aldrich, Buchs,
Switzerland). During medium changes, supernatant was
collected, incubated with the provided solutions and quantified
spectrophotometrically at 490 nm absorbance (Infinite 200,
Tecan Trading AG, Männedorf, Switzerland). LDH release
was compared to total LDH release of lysed cells.

To determine the time of highest cell confluence for
initiation of differentiation on the substrates, cell number
was assessed by DNA quantification on days 3, 5 and
7 (CyQuant, cell proliferation assay, Invitrogen, Carlsbad,
USA). Constructs were incubated in cell lysis buffer,
sonicated (SonopulsHD2070/UW2070, Bandelin Electronic,
Berlin, Germany), vortexed, centrifuged and incubated with
a DNA binding agent. Quantification was accomplished
spectrophotometrically (Infinite 200, Tecan Trading AG,
Männedorf, Switzerland, at 480 nm excitation and 520 nm
emission). For cell viability and proliferation analysis, n = 12.

2.2.2. Myoblast and myotube orientation. Cell angle
analysis, (NISelements BR software, Nikon, Melville, USA)
was used to estimate spatial cell orientation with respect to
fibre alignment. Myoblasts were stained for desmin (anti-
desmin antibody, Abd Serotec, USA; 1:200) in phosphate
buffered saline (PBS, Spitalpharmazie, Inselspital, Bern,
Switzerland) by means of a commercially available staining
kit (EnVision System-HRP Kit, Dako, USA). Briefly,
substrates were fixed in 4% formaldehyde (Institute of
Pathology, Inselspital, Bern, Switzerland), permeabilized with
0.2% triton X-100 (Sigma-Aldrich, Buchs, Switzerland),
blocked with peroxidase complex, and labelled with anti-
mouse streptavidine-HRP. 3-amino-9-ethylcarbazole was
added and enzymatically converted to a red chromophore.
Constructs were counterstained with haematoxylin (Mayer’s
haematoxylin solution, Sigma-Aldrich, Buchs, Switzerland)
and mounted with Glycergel (Dako Schweiz AG, Baar,
Switzerland).

Cell orientation was quantified using the following
orientation parameter:

S = 1

n

n∑

i=1

cos(2αi), (1)
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Figure 2. SEM images of the micropatterned nanofibrous substrate. The relief has been copied to the fibrous scaffold, the periodic pattern is
clearly visible. Scale bars represent 300 μm (a) and 100 μm (b).

where n = number of cells, α = cell angle, S = 1 for
aligned cells and S = 0 for randomly oriented cells (Erickson
and Nuccitelli 1984, Biela et al 2009). 1800 cell angles per
condition were assessed. Myotube orientation was similarly
evaluated (n = 450).

2.2.3. Myotube differentiation. ImageJ (free download
at http://rsbweb.nih.gov/ij/download.html) was employed
to assess length, width and cross sectional area of
desmin(+) stained myotubes. The degree of differentiation
is expressed as percentage of myotube coverage, whereas
myotube width and length are expressed as mean value ± SD,
assessed on 300 individual myotubes per condition.

2.3. Statistical analysis

All values are expressed as mean ± SD. Data were analysed
using SPSS for Windows (version 17.0; SPSS Inc., Chicago,
USA). Statistical analysis was performed with an ANOVA,
followed by pair-wise comparisons between groups, using
unpaired t-tests with Bonferroni adjustments. Two-sided
corrected P-values were considered statistically significant for
p � 0.05.

A power analysis was accomplished using the free
Java Applets for power and sample size, retrieved from
http://www.stat.uiowa.edu/˜rlenth/Power (Lenth 2006–2009).
We calculated the sample size required to achieve a power
of 0.95 given that α = 0.05. Furthermore, a retrospective
calculation of the statistical power for a two sampled t-test
was performed.

3. Results and discussion

3.1. Substrate characterization

In this study, two approaches were combined to produce
micropatterned, anisotropic electrospun matrices. Different
collectors allowed for the production of PCL matrices
displaying distinct fibre orientation and surface topography:
spinning onto a static steel plate resulted in matrices
displaying randomly-oriented nano scaled fibres (n-RO);
whereas spinning onto a drum, rotating at a speed of about
1000 rpm, resulted in the generation of parallel-aligned
nanofibres (n-AL). Additionally, we used an original approach
to produce electrospun fibres with a periodic pattern and a
distinct surface topography (n-TOP). The surface structurewas

Table 2.Mechanical properties of investigated matrices.

Fibre Elastic Ultimate Elongation
Matrix diameter (nm) modulus (MPa) strength (MPa) at break (%)

n-RO 265 ± 97 7 ± 4 4 ± 3 161 ± 56
n-AL 354 ± 156 17 ± 8 14 ± 3 64 ± 15
n-TOP 148 ± 43a 36 ± 16 15 ± 4 44 ± 7

a p < 0.01 versus n-AL and n-RO (n = 100, power π = 1).

transferred to the fibrous matrix, resulting in a wavy structure
of grooves and ridges with 90 μm periodicity (figure 2). We
suggest that the latter fibres first filled the grooves of the drum,
and were then covered with additional fibres in a second
step, resulting in a patterned matrix. Fibre diameters were
statistically different for all comparisons; displaying 265 ±
97 nm on randomly oriented matrices, 354 ± 156 nm on
parallel oriented matrices and 148 ± 43 nm on patterned
matrices. Matrix morphologies are displayed in figure 3.

Mechanical properties were determined based on stress–
strain measurements and reported in table 2. No significant
differences among anisotropic substrates (micropatterned or
unpatterned)were found.Asmight be expected, n-ROmatrices
possessed higher elongation at break values due to reassembly
of the fibrous structure prior to fibre drawing and breaking.
Similarly, Kim (2008) reported distinct mechanical properties
of PCL electrospun membranes depending on fibre or stress
orientation.

To our knowledge, few methods to pattern fibrous
electrospun substrates have been documented. Importantly,
this approach permits the combination of two well-known
triggers of cell alignment that have usually been studied
individually.Micropatterned structures have been incorporated
on electrospun membranes of polyurethanes or PCL/gelatine
blends using either femtosecond-pulse laser ablation (Lim
et al 2011) or silicone moulds patterned with soft lithography
(Dempsey et al 2010). Both methods resulted in the generation
of sharp surface topographies of varying groove widths and
depths of 20–500 μm, depending on the method. Of note,
our substrates display a continuous, wavy topography without
clear boundaries. These characteristics are of particular
importance as, firstly, this topography comes close to the
grooved architecture of native muscle tissue; and, secondly,
the fibrous matrices architecturally mimic the fibrous nature
of the extracellular matrix, thereby providing an adequate
environment for cell adhesion and orientation.
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Figure 3. SEM images of randomly oriented (n-RO), parallel-oriented (n-AL) and patterned (n-TOP) electrospun matrices at low (a) and
high (b) magnifications. The patterned surface of the matrix is highlighted with dashed lines, showing grooves of the matrix. On n-TOP
substrates, fibre orientation is less pronounced than on n-AL substrates. Scale bars represent 100 μm (a) and 5 μm (b).

Figure 4. Cell viability was assessed with an MTT test. OD relative
to TCPS was 0.66 ± 0.01. Cell viability did not differ among
conditions.

3.2. Cell viability and proliferation

MTT analysis, LDH release and cell proliferation assays
confirmed the presence of viable cells on the three distinct
substrates. LDH corresponded to 6 ± 1%of that for total lysed
cells and was comparable to LDH release in standard TCPS
cell cultures. AnMTT test performed 24 h after seeding further
confirmed cell viability on all substrates. Spectrophotometrical
analysis revealed an optical density (OD) of 0.66 ± 0.01
relative to C2C12 culture on TCPS (figure 4). No significant
differences were found among conditions. The MTT test
confirmed cytocompatibility of the designed substrates.

For myoblast fusion and myotube formation to occur,
close proximity and orientation of cells is mandatory.
Consequently, cell confluence on the culture substrate is
of paramount importance for onset of differentiation. Cell
number on the respective substrates was assessed at three
time points in order to define the optimal time for addition

Figure 5. Cell number was assessed with CyQuant DNA
quantification. Cell number was highest three days post seeding and
significantly decreased with time. (∗ p < 0.01 compared to day 3
with respective substrate; # p < 0.01 compared to day 3 with n-TOP
substrates; n = 12, power π > 0.98).

of differentiation medium, based on maximal cell number and
confluence. Following initial seedingwith an aliquot of 0.12 ±
0.02 × 106 cells, cell number reached a peak after three days
of culture.

The growth phase was followed by a decrease in
cell number over time (figure 5). Accordingly, myotube
differentiation was initiated three days post seeding.

3.3. Myoblast orientation

The orientation parameter for myoblasts cultured on n-
RO fibres was S = 0.35 ± 0.2, indicating random cell
orientation. Conversely, orientation parameters calculated for
cells cultured on both anisotropic substrates were significantly
higher, 0.65 ± 0.1 and 0.67 ± 0.1 for n-AL or n-TOP,
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Figure 6. (a) Light microscopy images of desmin(+) stained myotubes on n-RO, n-AL and n-TOP substrates. Arrows indicate fibre
orientation. Scale bar represents 1 mm. (b) Histogram of myotube angle relative to fibre orientation. Myotubes on n-RO substrates were
randomly oriented, displaying a spiral-like pattern. On n-AL substrates, myotubes followed fibre alignment, whereas myotubes on patterned
substrates were oriented at an angle of 21 ± 5◦ (median of 24◦) relative to fibre orientation.

respectively. These results are in accordance with previous
reports, in which contact guidance has been reported
to significantly impact upon myoblast spatial orientation
(represented by a direct correlation of fibre orientation or
topography with cell orientation). Conventional approaches
for myoblast orientation have utilized lithography to create
micropatterns of varying geometry on flat substrate such as
PDMS. In these conditions, periodic grooves/ridges have been
demonstrated to influence myoblast orientation and myotube
formation. Lam et al (2006) reported increased myoblast
alignment and myotube formation on continuous waves of
6 μm periodicity, whereas Charest et al (2007) found groove
widths of 5, 10 or 25 μm adequate. Another study (Altomare
et al 2010) found that structures of 25–50 μm induced
myoblast alignment. In addition, sub-micrometer topographies
displaying groove sizes of 450–900 nmwere found to promote
myoblast alignment and fusion into longer, more regularly
shaped myotubes in comparison with flat substrates. Similar
to reports of substrates with grooves of various widths and
depths, electrospunfibres of various polymers in the nanometre
or micrometre range were reported to induce spatial myoblast
orientation and fusion into multinucleated myotubes (Choi
et al 2008, Riboldi et al 2008, Aviss et al 2010). Various
studies led to the hypothesis that a wide range of fibre
diameter (300 nm to 12 μm) can induce myoblast orientation.
Previous studies of our group (Guex et al 2012), however,
have demonstrated that spiral-like orientation patterns of
cells on parallel-oriented nanoscaled fibres were comparable
to commonly observed patterns in confluent TCPS cultures
(Palumberi et al 2006). Hypothetically, contact guidance is
restricted at a certain diameter threshold. The significantly
smaller fibres of n-TOP substrates did not lead to a spiral-like

pattern, suggesting that the micropattern added additional cues
for parallel orientation of myoblasts.

3.4. Myotube differentiation and orientation

Under partial serum deprivation for ten days, myoblasts
fused into multinucleated myotubes on all substrates. Light
microscopy of desmin(+) stained substrates revealed elongated,
multinucleated, unbranched myotubes (figure 6(a)). On
randomly oriented fibres, myotubes assembled into circle or
spiral-like patterns in a comparable manner to the orientation
of non-differentiated myoblasts on the same substrate. On
parallel-oriented substrates without surface pattern, elongated
myotubes assembled according to fibre orientation into parallel
patterns.Orientation parameterswere 0.24 ± 0.15 and 0.87 ±
0.01 on n-RO and n-AL, respectively.

Interestingly, micropatterned substrates induced divergent
myotube orientation. 70% of myotubes assembled at an
angle of 21 ± 5◦ (statistical median of 24◦) relative to
the periodic pattern and not according to fibre direction,
as reported for parallel-oriented fibres without an additional
surface topography (figure 6). A comparative study of grooved
PDMS substrates and PDMS posts by Gingras et al (2009)
reported on an unexpected alignment of myotubes with a mean
angle of 25 ± 5◦ relative to the symmetry of the posts. The
findings were explained by a computational geometric model
of the initially migrating myoblasts. Alignment along the
patterns at a certain angle was suggested to provide maximal
adhesion surface area. Conversely, myoblast orientation in our
studies was parallel along the grooves whereas only myotube
orientation displayed a different pattern.

Taken together, these results provide evidence that contact
guidance of myotubes on the fibrous topography is different
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Table 3.Myotube width and length.

Myotube width Myotube length Area coverage
Matrix (μm) (μm) (%)

n-RO 11 ± 5 255 ± 143 8.4 ± 7
n-AL 14 ± 6a 365 ± 212a 24.7 ± 7
n-TOP 15 ± 7a 436 ± 245b 14.5 ± 14

a p < 0.05 compared to n-RO (n = 300, power π = 1).
b p < 0.05 compared to n-RO and n-AL (n = 300, power π =
0.97).

than myoblast guidance. In contrast, myotube orientation
on two dimensional, non-fibrous patterns was reported as
parallel to the grooves (Lam et al 2006, Altomare et al 2010,
Wang et al 2010). Our observations suggest that a lateral fusion
of the myoblast is favoured by the underlying fibrous matrix.

Furthermore, Zhao et al (2009) initiated a double
seeding strategy, where additional myoblasts were seeded on
differentiated myotubes cultured on micropatterned PDMS
substrates. The additional layer of myotubes differentiated in a
much quicker time-frame and resulted in an increasedmyotube
width in comparison to the first layer. These results support the
importance of creating either a surface topography that closely
mimics the native substrate of extracellular matrix proteins and
myotubes during myogenesis or the incorporation of multiple
seeding steps. In our study, myotube differentiation was
significantly enhanced on both anisotropic matrices compared
to n-RO matrices. Percentage coverage of myotubes were 8.4
± 7% on n-RO, 24.7 ± 7 on n-AL and 14.5 ± 14 on n-TOP
matrices. On n-RO matrices, myotubes were also observed to
be significantly shorter than on substrates of aligned fibres
or micropatterned substrates of aligned fibres. Myotubes
on n-TOP substrates displayed a mean length of 436 ±
245 μm that was significantly longer than myotubes on n-AL
substrates (365 ± 212 μm; p < 0.05). Myotube width,
however, was comparable on both anisotropically structured
substrates, yet significantly larger than on n-RO substrates.
Values are presented in table 3. The standard interpretation of
the experimental results based on the p values was completed
by a retrospective power calculation. The large sample size
allowed us to increase the precision of the mean of measured
myotube length and width and resulted in a high power as
presented in table 3.

Although the difference in myotube length was relatively
small, we can conclude that an imprinted micropattern
on parallel-oriented fibres has a pronounced effect on
myotube spatial orientation and induced the formation of
longer myotubes. Myotube width and density were, however,
comparable to substrates without micropattern. Our results
highlight the importance of contact guidance in inducing
myotube fusion and enhancing muscle tissue generation.
The simple approach of generating dual-level topographical
matrices by electrospinning onto topographically structured
collectors provides an interesting approach for the design of
novel fibrous substrates. By varying the engraved topography
on the drum, scaffolds displaying various groove widths and
depths can easily be produced. To gain further insight into the
spatial orientation of myotubes on architecturally structured

scaffolds and their differentiation into mature myotubes, we
suggest a thorough study on groove width and depth in order
to optimize the culture substrate for further studies.

4. Conclusion

We report a one-step method to produce matrices of aligned,
electrospun fibres with an additional micron-scaled surface
topography. By using a patterned and rotating counter
electrode, a mirrored matrix of periodic grooves was obtained.
We demonstrate that the unique combination of nano-
fibrous matrices and micron-scaled periodic grooves creates a
substrate for muscle tissue engineering that closely resembles
native myogenesis. The periodic grooves induced the
formation of long myotubes and the orientation of myotubes
with a 24◦ deviation with respect to fibre orientation. Further
studies on distinct surface properties are needed to provide
insight into myotube formation on architecturally distinct
surfaces and would contribute to the amelioration of substrate
design for muscle tissue engineering. Micropatterning of
electrospun substrates provides an additional innovative
method for scaffold design and is worth being pursued in
future investigations.
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