60 research outputs found

    Structure of the Saccharolobus solfataricus type III-D CRISPR effector

    Get PDF
    We acknowledge funding from BBSRC BB/J005673/1 project grant to LS and MFW and ERC funding to MFW (grant ref 101018608). DK was funded by a Darwin Trust of Edinburgh grant. We acknowledge Diamond Light Source for access and support of the cryo-EM facilities at the UK's national Electron Bio-imaging Centre (eBIC) under proposal EM16637-14, funded by the Wellcome Trust, MRC and BBRSC. The Scottish Centre for Macromolecular Imaging (SCMI) is funded by the MRC (MC_PC_17135) and SFC (H17007).CRISPR-Cas is a prokaryotic adaptive immune system, classified into six different types, each characterised by a signature protein. Type III systems, classified based on the presence of a Cas10 subunit, are rather diverse multi- subunit assemblies with a range of enzymatic activities and downstream ancillary effectors. The broad array of current biotechnological CRISPR applications is mainly based on proteins classified as Type II, however recent developments established the feasibility and efficacy of multi-protein Type III CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The crenarchaeon Saccharolobus solfataricus has two type III system subtypes (III- B and III-D). Here, we report the cryo-EM structure of the Csm Type III-D complex from S. solfataricus (SsoCsm), which uses CRISPR RNA to bind target RNA molecules, activating the Cas10 subunit for antiviral defence. The structure reveals the complex organisation, subunit/subunit connectivity and protein/guide RNA interactions of the SsoCsm complex, one of the largest CRISPR effectors known.Publisher PDFPeer reviewe

    Structural nucleotide analogs are potent activators/inhibitors of pancreatic beta-cell KATP channels: an emerging mechanism supporting their use as anti-diabetic drugs.

    Get PDF
    The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic beta-cell ATP-sensitive-K(+)(KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic beta-cell KATP channel and the Kir6.2C36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by i.p. GTT and on fasted glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP(IC50=10.1x10(-9)M) and Kir6.2C36(IC50=9.6x10(-9)M) channels which induced depolarization. In contrast, the 2-phenyl analog was a potent opener(DE50=0.04x10(-9)M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl>2-benzyl>2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg kg(-1)) and 2-phenyl analogs (2-30 mg kg(-1)) reduced and enhanced the glucose AUC curves, respectively, following the glucose loading in mice. These compounds did not affect the fasted glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which respectively confer the KATP channel blocking action with glucose lowering effects and the opening action with increased glucose levels. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel anti-diabetic drugs

    A multipronged approach to understanding the form and function of hStaufen protein

    Get PDF
    Staufen is a dsRNA binding protein that plays an essential role in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. Staufen is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that maintain the α-β-β-β-α fold but are unable to bind RNA and are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length human Staufen155, showing that its domains are arranged as beads-on-a-string in the absence of RNA

    Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity

    Get PDF
    The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endo-nucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a proto-spacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.Publisher PDFPeer reviewe

    A conserved mechanism for regulating replisome disassembly in eukaryotes.

    Get PDF
    Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase1-3. Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCFDia2 in budding yeast1, CUL2LRR1 in metazoa4-7), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA8-10. However, it is unknown how SCFDia2 and CUL2LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome-E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity

    The architecture of an Okazaki fragment-processing holoenzyme from the archaeon Sulfolobus solfataricus

    Get PDF
    DNA replication on the lagging strand occurs via the synthesis and maturation of Okazaki fragments. In archaea and eukaryotes, the enzymatic activities required for this process are supplied by a replicative DNA polymerase, Flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). These factors interact with the sliding clamp PCNA (proliferating cell nuclear antigen) providing a potential means of co-ordinating their sequential actions within a higher order assembly. In hyperthermophilic archaea of the Sulfolobus genus, PCNA is a defined heterotrimeric assembly and each subunit interacts preferentially with specific client proteins. We have exploited this inherent asymmetry to assemble a PCNA-polymerase-Fen1-ligase complex on DNA and have visualized it by electron microscopy. Our studies reveal the structural basis of co-occupancy of a single PCNA ring by the three distinct client proteins

    Characteristics and patterns of care of endometrial cancer before and during COVID-19 pandemic

    Get PDF
    Objective: Coronavirus disease 2019 (COVID-19) outbreak has correlated with the disruption of screening activities and diagnostic assessments. Endometrial cancer (EC) is one of the most common gynecological malignancies and it is often detected at an early stage, because it frequently produces symptoms. Here, we aim to investigate the impact of COVID-19 outbreak on patterns of presentation and treatment of EC patients. Methods: This is a retrospective study involving 54 centers in Italy. We evaluated patterns of presentation and treatment of EC patients before (period 1: March 1, 2019 to February 29, 2020) and during (period 2: April 1, 2020 to March 31, 2021) the COVID-19 outbreak. Results: Medical records of 5,164 EC patients have been retrieved: 2,718 and 2,446 women treated in period 1 and period 2, respectively. Surgery was the mainstay of treatment in both periods (p=0.356). Nodal assessment was omitted in 689 (27.3%) and 484 (21.2%) patients treated in period 1 and 2, respectively (p<0.001). While, the prevalence of patients undergoing sentinel node mapping (with or without backup lymphadenectomy) has increased during the COVID-19 pandemic (46.7% in period 1 vs. 52.8% in period 2; p<0.001). Overall, 1,280 (50.4%) and 1,021 (44.7%) patients had no adjuvant therapy in period 1 and 2, respectively (p<0.001). Adjuvant therapy use has increased during COVID-19 pandemic (p<0.001). Conclusion: Our data suggest that the COVID-19 pandemic had a significant impact on the characteristics and patterns of care of EC patients. These findings highlight the need to implement healthcare services during the pandemic

    Practice patterns and 90-day treatment-related morbidity in early-stage cervical cancer

    Get PDF
    To evaluate the impact of the Laparoscopic Approach to Cervical Cancer (LACC) Trial on patterns of care and surgery-related morbidity in early-stage cervical cancer

    Crystal Structures of Malonyl-Coenzyme A Decarboxylase Provide Insights into Its Catalytic Mechanism and Disease-Causing Mutations

    Get PDF
    Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore