10 research outputs found

    Induced Reproduction of Aphanius fasciatus by Ecophysiological Conditioning and Hormonal Treatment in Fresh and Marine Water

    Get PDF
    The Mediterranean toothcarp (Aphanius fasciatus) can be used to biologically control mosquito larvae. The reproductive performance of 234 Mediterranean toothcarp (180 females and 54 males) was investigated. Reproductive factors were determined in fish kept in fresh or saline water (males and females together), and in fish kept separately by sex in saline water and hormonally-treated with carp pituitary extract (CPE). In the hormonally-treated group, the combined effect of temperature, photoperiod, and hormonal treatment induced the best ovary maturation and larvae production rates. The rate of reproduction was very high (average eggs/female: 5.9-10.5) compared to natural reproduction in the wild (average eggs/female: 2-4). Additionally, the hatching rate was 97-100%. The results of this study show that reproduction of Mediterranean toothcarp can be controlled in an artificial environment: the lack of mortality in adults during acclimation and conditioning in fresh and marine waters indicates good domestication and plasticity in reproductive parameters

    Nebulization of pharmacological solutions with an innovative medical device based on microvaporization

    Get PDF
    The currently available nebulization devices have a slow aerosol flow and produce vapor with large microdrops. Improved devices that achieve higher airflow and produce smaller microdrops are needed to improve the clinical care of patients. To address this critical need, we developed a novel system for the molecular vaporization of liquids. This device vaporizes an active pharma-cological substance dissolved in water, alcohol, or a mixture of water and alcohol using two energy sources at the same time: high-frequency ultrasound and thermal induction. Application of energy to a solution contained in the device's tank allows, within tens of seconds, for the vaporization of the solution itself, with the generation of a vapor consisting of microdrops of very small diameter (0.2-0.3 mu m). In this article, we illustrate the technology used, the main verifi-cation tests performed, and the primary fields of application for this device. In particular, the advantages of both the aerosol delivery system and the administration system are highlighted

    Functional Complementation in Yeast Allows Molecular Characterization of Missense Argininosuccinate Lyase Mutations*

    No full text
    Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders

    Multimer formation and ligand recognition by the long pentraxin PTX3 - Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component

    Get PDF
    PTX3 is a prototypic long pentraxin consisting of a C-terminal 203- amino acid pentraxin-like domain coupled with an N-terminal 178-amino acid unrelated portion. The present study was designed to characterize the structure and ligand binding properties of human PTX3, in comparison with the classical pentraxins C-reactive protein and serum amyloid P component. Sequencing of Chinese hamster ovary cell-expressed PTX3 revealed that the mature secreted protein starts at residue 18 (Glu). Lectin binding and treatment with N-glycosidase F showed that PTX3 is N-glycosylated, sugars accounting for 5 kDa of the monomer mass (45 kDa). Circular dichroism analysis indicated that the protein consists predominantly of \u3b2-sheets with a minor \u3b1-helical component. While in gel filtration the protein is eluted with a molecular mass of 43900 kDa, gel electrophoresis using nondenaturing, nonreducing conditions revealed that PTX3 forms multimers predominantly of 440 kDa apparent molecular mass, corresponding to decamers, and that disulfide bonds are required for multimer formation. The ligand binding properties of PTX3 were then examined. As predicted based on modeling, inductive coupled plasma/atomic emission spectroscopy showed that PTX3 does not have coordinated Ca2+. Unlike the classical pentraxins CRP and SAP. PTX3 did not bind phosphoethanolamine, phosphocholine, or high pyruvate agarose. PTX3 in solution, bound to immobilized C1q, but not C1s, and, reciprocally, C1q bound to immobilized PTX3. Binding of PTX3 to C1q is specific and saturable with a K(d) 7.4 x 10-8 M as determined by solid phase binding assay. The Chinese hamster ovary cell-expressed pentraxin domain bound C1q when multimerized. Thus, as predicted on the basis of computer modeling, the prototypic long pentraxin PTX3 forms multimers, which differ from those formed by classical pentraxins in terms of protomer composition and requirement for disulfide bonds, and does not recognize CRP/SAP ligands. The capacity to bind C1q, mediated by the pentraxin domain, is consistent with the view that PTX3, produced in tissues by endothelial cells or macrophages in response to interleukin-1 and tumor necrosis factor, may act as a local regulator of innate immunity

    An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    Get PDF
    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity
    corecore