408 research outputs found

    Separation of foregrounds from cosmic microwave background observations with the MAP satellite

    Get PDF
    Simulated observations of a 10\dg \times 10\dg field by the Microwave Anisotropy Probe (MAP) are analysed in order to separate cosmic microwave background (CMB) emission from foreground contaminants and instrumental noise and thereby determine how accurately the CMB emission can be recovered. The simulations include emission from the CMB, the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free-free and synchrotron. We find that, even in the presence of these contaminating foregrounds, the CMB map is reconstructed with an rms accuracy of about 20 Ό\muK per 12.6 arcmin pixel, which represents a substantial improvement as compared to the individual temperature sensitivities of the raw data channels. We also find, for the single 10\dg \times 10\dg field, that the CMB power spectrum is accurately recovered for \ell \la 600.Comment: 7 pages, 7 figures, MNRAS submitte

    Global star formation history: A Local Group perspective

    Get PDF
    The global star formation rate (SFR) density is estimated from the star formation histories (SFHs) of Local Group galaxies. This is found to be broadly consistent with estimates of the global SFH from existing redshift surveys for two favoured cosmologies. It also provides additional evidence for a relatively constant global SFR density at high redshift (z>1).Comment: 7 pages, 4 figures, accepted by ApJ Letter

    The infrared luminosity function of galaxies at redshifts z=1 and z~2 in the GOODS fields

    Get PDF
    We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colours, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.Comment: Accepted for publication in the ApJ. 33 pages, 15 figures. Uses emulateap

    Cosmic Background dipole measurements with Planck-High Frequency Instrument

    Get PDF
    This paper discusses the Cosmic Background (CB) dipoles observations in the framework of the Planck mission. Dipoles observations can be used in three ways: (i) It gives a measurement of the peculiar velocity of our Galaxy which is an important observation in large scale structures formation model. (ii) Measuring the dipole can give unprecedent information on the monopole (that can be in some cases hard to obtain due to large foreground contaminations). (iii) The dipole can be an ideal absolute calibrator, easily detectable in cosmological experiments. Following the last two objectives, the main goal of the work presented here is twofold. First, we study the accuracy of the Planck-HFI calibration using the Cosmic Microwave Background (CMB) dipole measured by COBE as well as the Earth orbital motion dipole. We show that we can reach for HFI, a relative calibration between rings of about 1% and an absolute calibration better than 0.4% for the CMB channels (in the end, the absolute calibration will be limited by the uncertainties on the CMB temperature). We also show that Planck will be able to measure the CMB dipole direction at better than 1.7 arcmin and improve on the amplitude. Second, we investigate the detection of the Cosmic Far-Infrared Background (FIRB) dipole. Measuring this dipole could give a new and independent determination of the FIRB for which a direct determination is quite difficult due to Galactic dust emission contamination. We show that such a detection would require a Galactic dust emission removal at better than 1%, which will be very hard to achieve.Comment: 10 pages, 13 figures, submitted to A&A, uses aa.sty V5.

    Detection of rat brain activation using statistical parametric mapping analysis in FDG-PET studies

    Get PDF
    [Abstract] AMI International Conference 2003, September 21 - 27, Madrid, Spain: High Resolution Molecular Imaging: from Basic Science to Clinical ApplicationsStatistical parametric mapping (SPM) is an analysis technique long been used in clinical research to detect subtle activity changes in brain; it is an excellent exploratory tool as it does not require a priori assumptions about the expected brain region activations. Research in animal imaging may also take benefit from this technique, if properly adapted to the new scenario. This is the case of brain activation studies in murine models using PET tracers and dedicated imaging devices. This work proposes the use of an SPM methodology adapted to the analysis of 2-deoxy-2-[18F] fluoro-D-Glucose (FDG) positron emission tomography (PET) scans of rat brains. Advantages over conventional region of interest (ROI) based analysis were assessed in an experiment addressing the detection of brain activation in of rats which underwent three different visual stimulation paradigmsPublicad

    FIRBACK Source Counts and Cosmological Implications

    Get PDF
    FIRBACK is a one of the deepest surveys performed at 170 microns with ISOPHOT onboard ISO, and is aimed at the study of cosmic far infrared background sources. About 300 galaxies are detected in an area of four square degrees, and source counts present a strong slope of 2.2 on an integral "logN-logS" plot, which cannot be due to cosmological evolution if no K-correction is present. The resolved sources account for less than 10% of the Cosmic Infrared Background at 170 microns. In order to understand the nature of the sources contributing to the CIB, and to explain deep source counts at other wavelengths, we have developed a phenomenological model, which constrains in a simple way the luminosity function evolution with redshift, and fits all the existing deep source counts from the mid-infrared to the submillimetre range. Images, materials and papers available on the FIRBACK web: http://wwwfirback.ias.u-psud.fr wwwfirback.ias.u-psud.frComment: proceedings of "ISO Surveys of a Dusty Universe", eds. D. Lemke, M. Stickel, K. Wilke, Ringberg, 8-12 Nov 1999, to appear in Springer 'Lecture Notes of Physics'. 8 pages, 7 eps figures, .sty include

    FIRBACK Source Counts and Cosmological Implications

    Get PDF
    FIRBACK is a one of the deepest surveys performed at 170 microns with ISOPHOT onboard ISO, and is aimed at the study of cosmic far infrared background sources. About 300 galaxies are detected in an area of four square degrees, and source counts present a strong slope of 2.2 on an integral "logN-logS" plot, which cannot be due to cosmological evolution if no K-correction is present. The resolved sources account for less than 10% of the Cosmic Infrared Background at 170 microns. In order to understand the nature of the sources contributing to the CIB, and to explain deep source counts at other wavelengths, we have developed a phenomenological model, which constrains in a simple way the luminosity function evolution with redshift, and fits all the existing deep source counts from the mid-infrared to the submillimetre range. Images, materials and papers available on the FIRBACK web: http://wwwfirback.ias.u-psud.fr wwwfirback.ias.u-psud.frComment: proceedings of "ISO Surveys of a Dusty Universe", eds. D. Lemke, M. Stickel, K. Wilke, Ringberg, 8-12 Nov 1999, to appear in Springer 'Lecture Notes of Physics'. 8 pages, 7 eps figures, .sty include

    The extragalactic background and its fluctuations in the far-infrared wavelengths

    Get PDF
    A Cosmic Far-InfraRed Background (CFIRB) has long been predicted that would traces the intial phases of galaxy formation. It has been first detected by Puget et al.(1996) using COBE data and has been later confirmed by several recent studies (Fixsen et al. 1998, Hauser et al. 1998, Lagache et al. 1999). We will present a new determination of the CFIRB that uses for the first time, in addition to COBE data, two independent gas tracers: the HI survey of Leiden/Dwingeloo (hartmann, 1998) and the WHAM Hα_{\alpha} survey (Reynolds et al 1998). We will see that the CFIRB above 100 micron is now very well constrained. The next step is to see if we can detect its fluctuations. To search for the CFIRB fluctuations, we have used the FIRBACK observations. FIRBACK is a deep cosmological survey conducted at 170 micron with ISOPHOT (Dole et al., 2000). We show that the emission of unresolved extra-galactic sources clearly dominates, at arcminute scales, the background fluctuations in the lowest galactic emission regions. This is the first detection of the CFIRB fluctuations.Comment: To appear in "ISO Surveys of a Dusty Universe", Workshop at Ringberg Castle, November 8 - 12, 199

    Probing Early Structure Formation with Far-Infrared Background Correlations

    Full text link
    The large-scale structure of high-redshift galaxies produces correlated anisotropy in the far-infrared background (FIRB). In regions of the sky where the thermal emission from Galactic dust is well below average, these high-redshift correlations may be the most significant source of angular fluctuation power over a wide range of angular scales, from about 7' to about 3 degrees, and frequencies, from about 400 to about 1000 GHz. The strength of this signal should allow detailed studies of the statistics of the FIRB fluctuations, including the shape of the angular power spectrum at a given frequency and the degree of coherence between FIRB maps at different frequencies. The FIRB correlations depend upon and hence constrain the redshift-dependent spectral energy distributions, number counts, and clustering bias of the galaxies and active nuclei that contribute to the background. We quantify the accuracy to which Planck and a newly proposed balloon-borne mission EDGE could constrain models of the high-redshift universe through the measurement of FIRB fluctuations. We conclude that the average bias of high-redshift galaxies could be measured to an accuracy of less than approximately 1% or, for example, separated into 4 redshift bins with about 10% accuracy.Comment: 15 emulateapj pages, including 9 figures, submitted to Ap

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 ÎŒ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 ÎŒ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 ÎŒ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 ÎŒ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
    • 

    corecore