48 research outputs found

    EBV-associated mononucleosis does not induce long-term global deficit in T-cell responsiveness to IL-15

    Get PDF
    It has been reported that infectious mononucleosis (IM)-symptomatic primary Epstein-Barr virus infection produces a global down-regulation of interleukin-15 receptor-\u3b1 (IL-15R\u3b1) on T cells and natural killer cells associated with a defective IL-15 responsiveness that lasts for many years after the disease episode. In contrast with these results, our data indicate that, in the T-cell compartment derived from remote IM subjects, there is no quantitative or qualitative defect in the expression of the IL-15R\u3b1 chain and no deficit in T-cell responsiveness to IL-15. We observed efficient signal transduction, survival, and proliferation even in response to low IL-15 concentrations. These data are relevant and shed new light on the immune long-term response in IM subjects because they contradict the hypothesis that defects in Epstein-Barr virus-host immune balance may be correlated with a long-lasting global deficit in T-cell responsiveness to IL-15. \ua9 2009 by The American Society of Hematology

    Detection of a Functional Hybrid Receptor γc/GM-CSFRβ in Human Hematopoietic CD34+ Cells

    Get PDF
    A functional hybrid receptor associating the common γ chain (γc) with the granulocyte/macrophage colony-stimulating factor receptor β (GM-CSFRβ) chain is found in mobilized human peripheral blood (MPB) CD34+ hematopoietic progenitors, SCF/Flt3-L primed cord blood (CB) precursors (CBPr CD34+/CD56−), and CD34+ myeloid cell lines, but not in normal natural killer (NK) cells, the cytolytic NK-L cell line or nonhematopoietic cells. We demonstrated, using CD34+ TF1β cells, which express an interleukin (IL)-15Rα/β/γc receptor, that within the hybrid receptor, the GM-CSFRβ chain inhibits the IL-15–triggered γc/JAK3-specific signaling controlling TF1β cell proliferation. However, the γc chain is part of a functional GM-CSFR, activating GM-CSF–dependent STAT5 nuclear translocation and the proliferation of TF1β cells. The hybrid receptor is functional in normal hematopoietic progenitors in which both subunits control STAT5 activation. Finally, the parental TF1 cell line, which lacks the IL-15Rβ chain, nevertheless expresses both a functional hybrid receptor that controls JAK3 phosphorylation and a novel IL-15α/γc/TRAF2 complex that triggers nuclear factor κB activation. The lineage-dependent distribution and function of these receptors suggest that they are involved in hematopoiesis because they modify transduction pathways that play a major role in the differentiation of hematopoietic progenitors

    Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15

    Get PDF
    BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells

    Interleukin-15 Plays a Central Role in Human Kidney Physiology and Cancer through the γc Signaling Pathway

    Get PDF
    The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation)

    Irradiation-Induced Up-Regulation of HLA-E on Macrovascular Endothelial Cells Confers Protection against Killing by Activated Natural Killer Cells

    Get PDF
    BACKGROUND: Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31), endoglin (CD105) and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs) differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK) cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary macrovascular human umbilical vein endothelial cells (HUVECs) only express UL16 binding protein 2 (ULBP2) and the major histocompatibility complex (MHC) class I chain-related protein MIC-A (MIC-A) as activating signals for NK cells, whereas the corresponding immortalized EA.hy926 EC cell line additionally present ULBP3, membrane heat shock protein 70 (Hsp70), intercellular adhesion molecule ICAM-1 (CD54) and HLA-E. Apart from MIC-B, the immortalized human microvascular endothelial cell line HMEC, resembles the phenotype of EA.hy926. Surprisingly, primary HUVECs are more sensitive to Hsp70 peptide (TKD) plus IL-2 (TKD/IL-2)-activated NK cells than their immortalized EC counterpatrs. This finding is most likely due to the absence of the inhibitory ligand HLA-E, since the activating ligands are shared among the ECs. The co-culture of HUVECs with activated NK cells induces ICAM-1 (CD54) and HLA-E expression on the former which drops to the initial low levels (below 5%) when NK cells are removed. Sublethal irradiation of HUVECs induces similar but less pronounced effects on HUVECs. Along with these findings, irradiation also induces HLA-E expression on macrovascular ECs and this correlates with an increased resistance to killing by activated NK cells. Irradiation had no effect on HLA-E expression on microvascular ECs and the sensitivity of these cells to NK cells remained unaffected. CONCLUSION/SIGNIFICANCE: These data emphasize that an irradiation-induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care
    corecore